Robinson M, Steyvers M
Psychol Rev. 2022; 130(1):71-101.
PMID: 36227284
PMC: 10257386.
DOI: 10.1037/rev0000395.
Ging-Jehli N, Ratcliff R
Psychol Aging. 2020; 35(6):850-865.
PMID: 32718157
PMC: 8034361.
DOI: 10.1037/pag0000562.
Sdoia S, Zivi P, Ferlazzo F
PLoS One. 2020; 15(2):e0228541.
PMID: 32069294
PMC: 7028258.
DOI: 10.1371/journal.pone.0228541.
Gade M, Friedrich K, Koch I
Mem Cognit. 2018; 47(2):240-256.
PMID: 30430391
DOI: 10.3758/s13421-018-0862-0.
Segal D, Stasenko A, Gollan T
J Exp Psychol Gen. 2018; 148(3):501-519.
PMID: 30394767
PMC: 6389445.
DOI: 10.1037/xge0000515.
Functional MRI in Macaque Monkeys during Task Switching.
Premereur E, Janssen P, Vanduffel W
J Neurosci. 2018; 38(50):10619-10630.
PMID: 30355629
PMC: 6580658.
DOI: 10.1523/JNEUROSCI.1539-18.2018.
Trading off switch costs and stimulus availability benefits: An investigation of voluntary task-switching behavior in a predictable dynamic multitasking environment.
Mittelstadt V, Miller J, Kiesel A
Mem Cognit. 2018; 46(5):699-715.
PMID: 29524178
DOI: 10.3758/s13421-018-0802-z.
Categorization difficulty modulates the mediated route for response selection in task switching.
Schneider D
Psychon Bull Rev. 2017; 25(5):1958-1967.
PMID: 29274057
DOI: 10.3758/s13423-017-1416-3.
On the relevance of the alpha frequency oscillation's small-world network architecture for cognitive flexibility.
Wolff N, Zink N, Stock A, Beste C
Sci Rep. 2017; 7(1):13910.
PMID: 29066804
PMC: 5654836.
DOI: 10.1038/s41598-017-14490-x.
Response-cue interval effects in extended-runs task switching: memory, or monitoring?.
Altmann E
Psychol Res. 2017; 83(5):1007-1019.
PMID: 28951972
DOI: 10.1007/s00426-017-0921-3.
Flexibility in task switching by monolinguals and bilinguals.
Wiseheart M, Viswanathan M, Bialystok E
Biling (Camb Engl). 2016; 19(1):141-146.
PMID: 26877705
PMC: 4749032.
DOI: 10.1017/S1366728914000273.
A neural network model of individual differences in task switching abilities.
Herd S, OReilly R, Hazy T, Chatham C, Brant A, Friedman N
Neuropsychologia. 2014; 62:375-89.
PMID: 24791709
PMC: 4167201.
DOI: 10.1016/j.neuropsychologia.2014.04.014.
A role for recency of response conflict in producing the bivalency effect.
Grundy J, Shedden J
Psychol Res. 2013; 78(5):679-91.
PMID: 24146081
DOI: 10.1007/s00426-013-0520-x.
Modelling response selection in task switching: testing the contingent encoding assumption.
Schneider D, Logan G
Q J Exp Psychol (Hove). 2013; 67(6):1074-95.
PMID: 24138405
PMC: 4315513.
DOI: 10.1080/17470218.2013.843009.
Electrophysiological evidence for preparatory reconfiguration before voluntary task switches but not cued task switches.
Kang M, Diraddo A, Logan G, Woodman G
Psychon Bull Rev. 2013; 21(2):454-61.
PMID: 23979831
PMC: 3933470.
DOI: 10.3758/s13423-013-0499-8.
The role of task-related learned representations in explaining asymmetries in task switching.
Barutchu A, Becker S, Carter O, Hester R, Levy N
PLoS One. 2013; 8(4):e61729.
PMID: 23613919
PMC: 3628671.
DOI: 10.1371/journal.pone.0061729.
Beyond feature binding: interference from episodic context binding creates the bivalency effect in task-switching.
Meier B, Rey-Mermet A
Front Psychol. 2012; 3:386.
PMID: 23060846
PMC: 3464479.
DOI: 10.3389/fpsyg.2012.00386.
The bivalency effect in task switching: event-related potentials.
Grundy J, Benarroch M, Woodward T, Metzak P, Whitman J, Shedden J
Hum Brain Mapp. 2011; 34(5):999-1012.
PMID: 22162123
PMC: 6869890.
DOI: 10.1002/hbm.21488.
The bivalency effect: adjustment of cognitive control without response set priming.
Rey-Mermet A, Meier B
Psychol Res. 2011; 76(1):50-9.
PMID: 21347864
DOI: 10.1007/s00426-011-0322-y.
No-go trials can modulate switch cost by interfering with effects of task preparation.
Lenartowicz A, Yeung N, Cohen J
Psychol Res. 2010; 75(1):66-76.
PMID: 20473686
PMC: 3016209.
DOI: 10.1007/s00426-010-0286-3.