» Articles » PMID: 11752471

Thalamic Bursting in Rats During Different Awake Behavioral States

Overview
Specialty Science
Date 2001 Dec 26
PMID 11752471
Citations 108
Authors
Affiliations
Soon will be listed here.
Abstract

Thalamic neurons have two firing modes: tonic and bursting. It was originally suggested that bursting occurs only during states such as slow-wave sleep, when little or no information is relayed by the thalamus. However, bursting occurs during wakefulness in the visual and somatosensory thalamus, and could theoretically influence sensory processing. Here we used chronically implanted electrodes to record from the ventroposterior medial thalamic nucleus (VPM) and primary somatosensory cortex (SI) of awake, freely moving rats during different behaviors. These behaviors included quiet immobility, exploratory whisking (large-amplitude whisker movements), and whisker twitching (small-amplitude, 7- to 12-Hz whisker movements). We demonstrated that thalamic bursting appeared during the oscillatory activity occurring before whisker twitching movements, and continued throughout the whisker twitching. Further, thalamic bursting occurred during whisker twitching substantially more often than during the other behaviors, and a neuron was most likely to respond to a stimulus if a burst occurred approximately 120 ms before the stimulation. In addition, the amount of cortical area activated was similar to that during whisking. However, when SI was inactivated by muscimol infusion, whisker twitching was never observed. Finally, we used a statistical technique called partial directed coherence to identify the direction of influence of neural activity between VPM and SI, and observed that there was more directional coherence from SI to VPM during whisker twitching than during the other behaviors. Based on these findings, we propose that during whisker twitching, a descending signal from SI triggers thalamic bursting that primes the thalamocortical loop for enhanced signal detection during the whisker twitching behavior.

Citing Articles

Pathological tau alters head direction signaling and induces spatial disorientation.

Jiang S, Hijazi S, Sarkany B, Gautsch V, LaChance P, Hasselmo M bioRxiv. 2024; .

PMID: 39574637 PMC: 11581017. DOI: 10.1101/2024.11.07.622548.


Restoring thalamocortical circuit dysfunction by correcting HCN channelopathy in Shank3 mutant mice.

Guo B, Liu T, Choi S, Mao H, Wang W, Xi K Cell Rep Med. 2024; 5(5):101534.

PMID: 38670100 PMC: 11149412. DOI: 10.1016/j.xcrm.2024.101534.


A mechanism for deviance detection and contextual routing in the thalamus: a review and theoretical proposal.

Varela C, Moreira J, Kocaoglu B, Dura-Bernal S, Ahmad S Front Neurosci. 2024; 18:1359180.

PMID: 38486972 PMC: 10938916. DOI: 10.3389/fnins.2024.1359180.


Optimization of Temporal Coding of Tactile Information in Rat Thalamus by Locus Coeruleus Activation.

Rodenkirch C, Wang Q Biology (Basel). 2024; 13(2).

PMID: 38392298 PMC: 10886390. DOI: 10.3390/biology13020079.


Posttraumatic and Idiopathic Spike-Wave Discharges in Rats: Discrimination by Morphology and Thalamus Involvement.

Komoltsev I, Salyp O, Volkova A, Bashkatova D, Shirobokova N, Frankevich S Neurol Int. 2023; 15(2):609-621.

PMID: 37218977 PMC: 10204524. DOI: 10.3390/neurolint15020038.


References
1.
Sherman S . Tonic and burst firing: dual modes of thalamocortical relay. Trends Neurosci. 2001; 24(2):122-6. DOI: 10.1016/s0166-2236(00)01714-8. View

2.
Steriade M . Central core modulation of spontaneous oscillations and sensory transmission in thalamocortical systems. Curr Opin Neurobiol. 1993; 3(4):619-25. DOI: 10.1016/0959-4388(93)90064-6. View

3.
Ramcharan E, Gnadt J, Sherman S . Burst and tonic firing in thalamic cells of unanesthetized, behaving monkeys. Vis Neurosci. 2000; 17(1):55-62. DOI: 10.1017/s0952523800171056. View

4.
Guido W, Lu S, Sherman S . Relative contributions of burst and tonic responses to the receptive field properties of lateral geniculate neurons in the cat. J Neurophysiol. 1992; 68(6):2199-211. DOI: 10.1152/jn.1992.68.6.2199. View

5.
Salmelin R, Hari R . Spatiotemporal characteristics of sensorimotor neuromagnetic rhythms related to thumb movement. Neuroscience. 1994; 60(2):537-50. DOI: 10.1016/0306-4522(94)90263-1. View