» Articles » PMID: 11746377

Early Formation of Mature Amyloid-beta Protein Deposits in a Mutant APP Transgenic Model Depends on Levels of Abeta(1-42)

Overview
Journal J Neurosci Res
Specialty Neurology
Date 2001 Dec 18
PMID 11746377
Citations 127
Authors
Affiliations
Soon will be listed here.
Abstract

The main objective of the present study was to develop an alternative singly-transgenic (tg) hAPP model where amyloid deposition will occur at an earlier age. For this purpose, we generated lines of tg mice expressing hAPP751 cDNA containing the London (V717I) and Swedish (K670M/N671L) mutations under the regulatory control of the murine (m)Thy-1 gene (mThy1-hAPP751). In the brains of the highest (line 41) and intermediate (lines 16 and 11) expressers, high levels of hAPP expression were found in neurons in layers 4-5 of the neocortex, hippocampal CA1 and olfactory bulb. As early as 3-4 months of age, line 41 mice developed mature plaques in the frontal cortex, whereas at 5-7 months plaque formation extended to the hippocampus, thalamus and olfactory region. Ultrastructural and double-immunolabeling analysis confirmed that most plaques were mature and contained dystrophic neurites immunoreactive with antibodies against APP, synaptophysin, neurofilament and tau. In addition, a decrease in the number of synaptophysin-immunoreactive terminals was most prominent in the frontal cortex of mice from line 41. Mice from line 11 developed diffuse amyloid deposits at 11 months of age, whereas mice from line 16 did not show evidence of amyloid deposition. Analysis of Abeta by ELISA showed that levels of Abeta(1-40) were higher in mice that did not show any amyloid deposits (line 16), whereas Abeta(1-42) was the predominant species in tg animals from the lines showing plaque formation (lines 41 and 11). Taken together this study indicates that early onset plaque formation depends on levels of Abeta(1-42).

Citing Articles

Sigma-2 receptor modulator CT1812 alters key pathways and rescues retinal pigment epithelium (RPE) functional deficits associated with dry age-related macular degeneration (AMD).

Lizama B, Keeling E, Cho E, Malagise E, Knezovich N, Waybright L Sci Rep. 2025; 15(1):4256.

PMID: 39929889 PMC: 11810999. DOI: 10.1038/s41598-025-87921-9.


Updates in Alzheimer's disease: from basic research to diagnosis and therapies.

Liu E, Zhang Y, Wang J Transl Neurodegener. 2024; 13(1):45.

PMID: 39232848 PMC: 11373277. DOI: 10.1186/s40035-024-00432-x.


Human tNeurons reveal aging-linked proteostasis deficits driving Alzheimer's phenotypes.

Chou C, Vest R, Prado M, Wilson-Grady J, Paulo J, Shibuya Y Res Sq. 2024; .

PMID: 38853828 PMC: 11160905. DOI: 10.21203/rs.3.rs-4407236/v1.


A TrkB and TrkC partial agonist restores deficits in synaptic function and promotes activity-dependent synaptic and microglial transcriptomic changes in a late-stage Alzheimer's mouse model.

Latif-Hernandez A, Yang T, Butler 3rd R, Losada P, Minhas P, White H Alzheimers Dement. 2024; 20(7):4434-4460.

PMID: 38779814 PMC: 11247716. DOI: 10.1002/alz.13857.


Transgenic amyloid precursor protein mouse models of amyloidosis. Incomplete models for Alzheimer's disease but effective predictors of anti-amyloid therapies.

Morgan D, Lamb B Alzheimers Dement. 2023; 20(2):1459-1464.

PMID: 38085800 PMC: 10916971. DOI: 10.1002/alz.13566.