» Articles » PMID: 11729144

Dissection of the Functions of the Saccharomyces Cerevisiae RAD6 Postreplicative Repair Group in Mutagenesis and UV Sensitivity

Overview
Journal Genetics
Specialty Genetics
Date 2001 Dec 1
PMID 11729144
Citations 23
Authors
Affiliations
Soon will be listed here.
Abstract

The RAD6 postreplicative repair group participates in various processes of DNA metabolism. To elucidate the contribution of RAD6 to starvation-associated mutagenesis, which occurs in nongrowing cells cultivated under selective conditions, we analyzed the phenotype of strains expressing various alleles of the RAD6 gene and single and multiple mutants of the RAD6, RAD5, RAD18, REV3, and MMS2 genes from the RAD6 repair group. Our results show that the RAD6 repair pathway is also active in starving cells and its contribution to starvation-associated mutagenesis is similar to that of spontaneous mutagenesis. Epistatic analysis based on both spontaneous and starvation-associated mutagenesis and UV sensitivity showed that the RAD6 repair group consists of distinct repair pathways of different relative importance requiring, besides the presence of Rad6, also either Rad18 or Rad5 or both. We postulate the existence of four pathways: (1) nonmutagenic Rad5/Rad6/Rad18, (2) mutagenic Rad5/Rad6 /Rev3, (3) mutagenic Rad6/Rad18/Rev3, and (4) Rad6/Rad18/Rad30. Furthermore, we show that the high mutation rate observed in rad6 mutants is caused by a mutator different from Rev3. From our data and data previously published, we suggest a role for Rad6 in DNA repair and mutagenesis and propose a model for the RAD6 postreplicative repair group.

Citing Articles

stress-associated mutagenesis and developmental DNA repair.

Pedraza-Reyes M, Abundiz-Yanez K, Rangel-Mendoza A, Martinez L, Barajas-Ornelas R, Cuellar-Cruz M Microbiol Mol Biol Rev. 2024; 88(2):e0015823.

PMID: 38551349 PMC: 11332352. DOI: 10.1128/mmbr.00158-23.


Participation of the HIM1 gene of yeast Saccharomyces cerevisiae in the error-free branch of post-replicative repair and role Polη in him1-dependent mutagenesis.

Alekseeva E, Evstyukhina T, Peshekhonov V, Korolev V Curr Genet. 2020; 67(1):141-151.

PMID: 33128582 PMC: 7886746. DOI: 10.1007/s00294-020-01115-6.


Eukaryotic DNA polymerase ζ.

Makarova A, Burgers P DNA Repair (Amst). 2015; 29:47-55.

PMID: 25737057 PMC: 4426032. DOI: 10.1016/j.dnarep.2015.02.012.


Error-free DNA damage tolerance and sister chromatid proximity during DNA replication rely on the Polα/Primase/Ctf4 Complex.

Fumasoni M, Zwicky K, Vanoli F, Lopes M, Branzei D Mol Cell. 2015; 57(5):812-823.

PMID: 25661486 PMC: 4352764. DOI: 10.1016/j.molcel.2014.12.038.


Shared genetic pathways contribute to the tolerance of endogenous and low-dose exogenous DNA damage in yeast.

Lehner K, Jinks-Robertson S Genetics. 2014; 198(2):519-30.

PMID: 25060101 PMC: 4196610. DOI: 10.1534/genetics.114.168617.


References
1.
Roche H, Gietz R, Kunz B . Specificities of the Saccharomyces cerevisiae rad6, rad18, and rad52 mutators exhibit different degrees of dependence on the REV3 gene product, a putative nonessential DNA polymerase. Genetics. 1995; 140(2):443-56. PMC: 1206625. DOI: 10.1093/genetics/140.2.443. View

2.
Bailly V, Lamb J, Sung P, Prakash S, Prakash L . Specific complex formation between yeast RAD6 and RAD18 proteins: a potential mechanism for targeting RAD6 ubiquitin-conjugating activity to DNA damage sites. Genes Dev. 1994; 8(7):811-20. DOI: 10.1101/gad.8.7.811. View

3.
Guldener U, Heck S, Fielder T, Beinhauer J, Hegemann J . A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res. 1996; 24(13):2519-24. PMC: 145975. DOI: 10.1093/nar/24.13.2519. View

4.
Torres-Ramos C, Yoder B, Burgers P, Prakash S, Prakash L . Requirement of proliferating cell nuclear antigen in RAD6-dependent postreplicational DNA repair. Proc Natl Acad Sci U S A. 1996; 93(18):9676-81. PMC: 38488. DOI: 10.1073/pnas.93.18.9676. View

5.
Dor Y, Raboy B, KULKA R . Role of the conserved carboxy-terminal alpha-helix of Rad6p in ubiquitination and DNA repair. Mol Microbiol. 1996; 21(6):1197-206. DOI: 10.1046/j.1365-2958.1996.671433.x. View