» Articles » PMID: 11724913

Mechanisms of Neurodegeneration in Amyotrophic Lateral Sclerosis

Overview
Journal Mol Pathol
Specialty Molecular Biology
Date 2001 Nov 29
PMID 11724913
Citations 62
Authors
Affiliations
Soon will be listed here.
Abstract

Amyotrophic lateral sclerosis (ALS) is the most common variant of motor neurone disease affecting adults that usually strikes during mid to late life. Its aetiology is still poorly understood, although a major breakthrough came with the discovery that mutations in the Cu/Zn superoxide dismutase (SOD1) gene affect approximately 20% of patients with familial ALS. Experiments using both transgenic mice and ALS tissues have been useful in delineating other genetic defects in ALS. However, because only a subset of cases can be attributed to one particular molecular defect (such as mutation of SOD1 or the gene encoding neurofilament H), the aetiology of ALS is likely to be multifactorial. This review discusses the major mechanisms of neurodegeneration in ALS, such as oxidative stress, glutaminergic excitotoxicity, damage to vital organelles, and aberrant protein aggregation.

Citing Articles

Advances in physiological and clinical relevance of hiPSC-derived brain models for precision medicine pipelines.

Imani Farahani N, Lin L, Nazir S, Naderi A, Rokos L, McIntosh A Front Cell Neurosci. 2025; 18():1478572.

PMID: 39835290 PMC: 11743572. DOI: 10.3389/fncel.2024.1478572.


Chimeric Cell Therapies as a Novel Approach for Duchenne Muscular Dystrophy (DMD) and Muscle Regeneration.

Budzynska K, Siemionow M, Stawarz K, Chambily L, Siemionow K Biomolecules. 2024; 14(5).

PMID: 38785982 PMC: 11117592. DOI: 10.3390/biom14050575.


Evidence for alterations in lipid profiles and biophysical properties of lipid rafts from spinal cord in sporadic amyotrophic lateral sclerosis.

Diaz M, Fabelo N, Martin M, Santos G, Ferrer I J Mol Med (Berl). 2024; 102(3):391-402.

PMID: 38285093 PMC: 10879240. DOI: 10.1007/s00109-024-02419-7.


The effects of axonal beading and undulation on axonal diameter estimation from diffusion MRI: Insights from simulations in human axons segmented from three-dimensional electron microscopy.

Lee H, Tian Q, Sheft M, Coronado-Leija R, Ramos-Llorden G, Abdollahzadeh A NMR Biomed. 2024; 37(4):e5087.

PMID: 38168082 PMC: 10942763. DOI: 10.1002/nbm.5087.


Single-subject electroencephalography measurement of interhemispheric transfer time for the in-vivo estimation of axonal morphology.

Oliveira R, Lucia M, Lutti A Hum Brain Mapp. 2023; 44(14):4859-4874.

PMID: 37470446 PMC: 10472916. DOI: 10.1002/hbm.26420.


References
1.
Strong M, Sopper M, Crow J, Strong W, Beckman J . Nitration of the low molecular weight neurofilament is equivalent in sporadic amyotrophic lateral sclerosis and control cervical spinal cord. Biochem Biophys Res Commun. 1998; 248(1):157-64. DOI: 10.1006/bbrc.1998.8930. View

2.
Al-Chalabi A, Andersen P, Nilsson P, Chioza B, Andersson J, Russ C . Deletions of the heavy neurofilament subunit tail in amyotrophic lateral sclerosis. Hum Mol Genet. 1999; 8(2):157-64. DOI: 10.1093/hmg/8.2.157. View

3.
Bar P . Motor neuron disease in vitro: the use of cultured motor neurons to study amyotrophic lateral sclerosis. Eur J Pharmacol. 2000; 405(1-3):285-95. DOI: 10.1016/s0014-2999(00)00560-4. View

4.
Robberecht W . Genetics of amyotrophic lateral sclerosis. J Neurol. 2009; 247 Suppl 6:VI/2-6. DOI: 10.1007/PL00007785. View

5.
Sasaki S, Shibata N, Komori T, Iwata M . iNOS and nitrotyrosine immunoreactivity in amyotrophic lateral sclerosis. Neurosci Lett. 2000; 291(1):44-8. DOI: 10.1016/s0304-3940(00)01370-7. View