Lebedeva T, Bostrom J, Kremnyov S, Morsdorf D, Niedermoser I, Genikhovich E
Nat Commun. 2025; 16(1):2476.
PMID: 40075083
PMC: 11903683.
DOI: 10.1038/s41467-025-57109-w.
Wu X, Kreutz A, Dixon D, Tokar E
Toxicol Appl Pharmacol. 2025; 496:117230.
PMID: 39842615
PMC: 11846691.
DOI: 10.1016/j.taap.2025.117230.
Shi D
J Dev Biol. 2024; 12(3).
PMID: 39189260
PMC: 11348223.
DOI: 10.3390/jdb12030020.
Powell-Rodgers G, Pirzada M, Richee J, Jungers C, Colijn S, Stratman A
bioRxiv. 2024; .
PMID: 39149385
PMC: 11326282.
DOI: 10.1101/2024.08.09.607392.
Albano G, Hackam A
Front Cell Dev Biol. 2024; 12:1417928.
PMID: 38882059
PMC: 11176474.
DOI: 10.3389/fcell.2024.1417928.
Dissection of N-deacetylase and N-sulfotransferase activities of NDST1 and their effects on Wnt8 distribution and signaling in Xenopus embryos.
Suzuki M, Takada S, Mii Y
Dev Growth Differ. 2024; 66(3):248-255.
PMID: 38326088
PMC: 11457514.
DOI: 10.1111/dgd.12915.
R-Spondin 2 governs Xenopus left-right body axis formation by establishing an FGF signaling gradient.
Lee H, Camuto C, Niehrs C
Nat Commun. 2024; 15(1):1003.
PMID: 38307837
PMC: 10837206.
DOI: 10.1038/s41467-024-44951-7.
microRNA-1 regulates sea urchin skeletogenesis by directly targeting skeletogenic genes and modulating components of signaling pathways.
Sampilo N, Song J
Dev Biol. 2024; 508:123-137.
PMID: 38290645
PMC: 10985635.
DOI: 10.1016/j.ydbio.2024.01.010.
Evolutionarily conserved Wnt/Sp5 signaling is critical for anterior-posterior axis patterning in sea urchin embryos.
Gautam S, Fenner J, Wang B, Range R
iScience. 2024; 27(1):108616.
PMID: 38179064
PMC: 10765061.
DOI: 10.1016/j.isci.2023.108616.
Protocol for a Wnt reporter assay to measure its activity in human neural stem cells derived from induced pluripotent stem cells.
Yde Ohki C, Walter N, Rickli M, Salazar Campos J, Werling A, Doring C
Curr Res Neurobiol. 2023; 5:100095.
PMID: 37426743
PMC: 10329100.
DOI: 10.1016/j.crneur.2023.100095.
The evolutionary history of Brachyury genes in Hydrozoa involves duplications, divergence, and neofunctionalization.
Vetrova A, Kupaeva D, Kizenko A, Lebedeva T, Walentek P, Tsikolia N
Sci Rep. 2023; 13(1):9382.
PMID: 37296138
PMC: 10256749.
DOI: 10.1038/s41598-023-35979-8.
The brain regulatory program predates central nervous system evolution.
Faltine-Gonzalez D, Havrilak J, Layden M
Sci Rep. 2023; 13(1):8626.
PMID: 37244953
PMC: 10224969.
DOI: 10.1038/s41598-023-35721-4.
Wnt Signaling in Brain Tumors: A Challenging Therapeutic Target.
Manfreda L, Rampazzo E, Persano L
Biology (Basel). 2023; 12(5).
PMID: 37237541
PMC: 10215617.
DOI: 10.3390/biology12050729.
Ndst1, a heparan sulfate modification enzyme, regulates neuroectodermal patterning by enhancing Wnt signaling in Xenopus.
Yamamoto T, Kambayashi Y, Tsukano K, Michiue T
Dev Growth Differ. 2023; 65(3):153-160.
PMID: 36726238
PMC: 11520968.
DOI: 10.1111/dgd.12843.
Development and In Vitro Differentiation of Schwann Cells.
Horner S, Couturier N, Gueiber D, Hafner M, Rudolf R
Cells. 2022; 11(23).
PMID: 36497014
PMC: 9739763.
DOI: 10.3390/cells11233753.
Sea anemone Frizzled receptors play partially redundant roles in oral-aboral axis patterning.
Niedermoser I, Lebedeva T, Genikhovich G
Development. 2022; 149(19).
PMID: 36178132
PMC: 9720753.
DOI: 10.1242/dev.200785.
Vesicular Glutamate Release from Feeder-FreehiPSC-Derived Neurons.
Baldassari S, Cervetto C, Amato S, Fruscione F, Balagura G, Pelassa S
Int J Mol Sci. 2022; 23(18).
PMID: 36142455
PMC: 9501332.
DOI: 10.3390/ijms231810545.
A novel decellularized matrix of Wnt signaling-activated osteocytes accelerates the repair of critical-sized parietal bone defects with osteoclastogenesis, angiogenesis, and neurogenesis.
Wang X, Ma Y, Chen J, Liu Y, Liu G, Wang P
Bioact Mater. 2022; 21:110-128.
PMID: 36093329
PMC: 9411072.
DOI: 10.1016/j.bioactmat.2022.07.017.
Revealing the Impact of Mitochondrial Fitness During Early Neural Development Using Human Brain Organoids.
Romero-Morales A, Gama V
Front Mol Neurosci. 2022; 15:840265.
PMID: 35571368
PMC: 9102998.
DOI: 10.3389/fnmol.2022.840265.
Hif1α and Wnt are required for posterior gene expression during Xenopus tropicalis tail regeneration.
Patel J, Schattinger P, Takayoshi E, Wills A
Dev Biol. 2022; 483:157-168.
PMID: 35065905
PMC: 8881967.
DOI: 10.1016/j.ydbio.2022.01.007.