Statistical Inference of Sequence-dependent Mutation Rates
Overview
Authors
Affiliations
Several lines of research are now converging towards an integrated understanding of mutational mechanisms and their evolutionary implications. Experimentally, crystal structures reveal the effect of sequence context on polymerase fidelity; large-scale sequencing projects generate vast amounts of sequence polymorphism data; and locus-specific databases are being constructed. Computationally, software and analytical tools have been developed to analyze mutational data, to identify mutational hot spots, and to compare the signatures of mutagenic agents.
Mutational signatures and mutable motifs in cancer genomes.
Rogozin I, Pavlov Y, Goncearenco A, De S, Lada A, Poliakov E Brief Bioinform. 2017; 19(6):1085-1101.
PMID: 28498882 PMC: 6454500. DOI: 10.1093/bib/bbx049.
Single genome retrieval of context-dependent variability in mutation rates for human germline.
Sahakyan A, Balasubramanian S BMC Genomics. 2017; 18(1):81.
PMID: 28086752 PMC: 5237266. DOI: 10.1186/s12864-016-3440-5.
Comparative mutational analyses of influenza A viruses.
Cheung P, Rogozin I, Choy K, Ng H, Peiris J, Yen H RNA. 2014; 21(1):36-47.
PMID: 25404565 PMC: 4274636. DOI: 10.1261/rna.045369.114.
DeRose-Wilson L, Gaut B BMC Evol Biol. 2007; 7:66.
PMID: 17451608 PMC: 1865379. DOI: 10.1186/1471-2148-7-66.
Neighboring-nucleotide effects on the mutation patterns of the rice genome.
Zhao H, Li Q, Zeng C, Yang H, Yu J Genomics Proteomics Bioinformatics. 2006; 3(3):158-68.
PMID: 16487081 PMC: 5172528. DOI: 10.1016/s1672-0229(05)03021-4.