» Articles » PMID: 11567011

Cytochrome Complex Essential for Photosynthetic Oxidation of Both Thiosulfate and Sulfide in Rhodovulum Sulfidophilum

Overview
Journal J Bacteriol
Specialty Microbiology
Date 2001 Sep 22
PMID 11567011
Citations 24
Authors
Affiliations
Soon will be listed here.
Abstract

Many photosynthetic bacteria use inorganic sulfur compounds as electron donors for carbon dioxide fixation. A thiosulfate-induced cytochrome c has been purified from the photosynthetic alpha-proteobacterium Rhodovulum sulfidophilum. This cytochrome c(551) is a heterodimer of a diheme 30-kDa SoxA subunit and a monoheme 15-kDa SoxX subunit. The cytochrome c(551) structural genes are part of an 11-gene sox locus. Sequence analysis suggests that the ligands to the heme iron in SoxX are a methionine and a histidine, while both SoxA hemes are predicted to have unusual cysteine-plus-histidine coordination. A soxA mutant strain is unable to grow photoautotrophically on or oxidize either thiosulfate or sulfide. Cytochrome c(551) is thus essential for the metabolism of both these sulfur species. Periplasmic extracts of wild-type R. sulfidophilum exhibit thiosulfate:cytochrome c oxidoreductase activity. However, such activity can only be measured for a soxA mutant strain if the periplasmic extract is supplemented with purified cytochrome c(551). Gene clusters similar to the R. sulfidophilum sox locus can be found in the genome of a green sulfur bacterium and in phylogenetically diverse nonphotosynthetic autotrophs.

Citing Articles

YeeE-like bacterial SoxT proteins mediate sulfur import for oxidation and signal transduction.

Li J, Gobel F, Hsu H, Koch J, Hager N, Flegler W Commun Biol. 2024; 7(1):1548.

PMID: 39572704 PMC: 11582611. DOI: 10.1038/s42003-024-07270-7.


In the Alphaproteobacterium SoxR Serves a Sulfane Sulfur-Responsive Repressor of Sulfur Oxidation.

Li J, Torkel K, Koch J, Tanabe T, Hsu H, Dahl C Antioxidants (Basel). 2023; 12(8).

PMID: 37627615 PMC: 10451225. DOI: 10.3390/antiox12081620.


Cold Sulfur Springs-Neglected Niche for Autotrophic Sulfur-Oxidizing Bacteria.

Nosalova L, Piknova M, Kolesarova M, Pristas P Microorganisms. 2023; 11(6).

PMID: 37374938 PMC: 10301885. DOI: 10.3390/microorganisms11061436.


Generation and Physiology of Hydrogen Sulfide and Reactive Sulfur Species in Bacteria.

Han S, Li Y, Gao H Antioxidants (Basel). 2022; 11(12).

PMID: 36552695 PMC: 9774590. DOI: 10.3390/antiox11122487.


Sulfur and methane oxidation by a single microorganism.

Gwak J, Awala S, Nguyen N, Yu W, Yang H, von Bergen M Proc Natl Acad Sci U S A. 2022; 119(32):e2114799119.

PMID: 35914169 PMC: 9371685. DOI: 10.1073/pnas.2114799119.


References
1.
Knofel T, Strater N . X-ray structure of the Escherichia coli periplasmic 5'-nucleotidase containing a dimetal catalytic site. Nat Struct Biol. 1999; 6(5):448-53. DOI: 10.1038/8253. View

2.
Reinartz M, Tschape J, Bruser T, Truper H, Dahl C . Sulfide oxidation in the phototrophic sulfur bacterium Chromatium vinosum. Arch Microbiol. 1998; 170(1):59-68. DOI: 10.1007/s002030050615. View

3.
Hallenbeck P, Clark M, Barrett E . Characterization of anaerobic sulfite reduction by Salmonella typhimurium and purification of the anaerobically induced sulfite reductase. J Bacteriol. 1989; 171(6):3008-15. PMC: 210008. DOI: 10.1128/jb.171.6.3008-3015.1989. View

4.
Schutz M, Maldener I, Griesbeck C, Hauska G . Sulfide-quinone reductase from Rhodobacter capsulatus: requirement for growth, periplasmic localization, and extension of gene sequence analysis. J Bacteriol. 1999; 181(20):6516-23. PMC: 103789. DOI: 10.1128/JB.181.20.6516-6523.1999. View

5.
Petri R, Podgorsek L, Imhoff J . Phylogeny and distribution of the soxB gene among thiosulfate-oxidizing bacteria. FEMS Microbiol Lett. 2001; 197(2):171-8. DOI: 10.1111/j.1574-6968.2001.tb10600.x. View