» Articles » PMID: 11520858

Impact of the Six Nucleotides Downstream of the Stop Codon on Translation Termination

Overview
Journal EMBO Rep
Specialty Molecular Biology
Date 2001 Aug 25
PMID 11520858
Citations 122
Authors
Affiliations
Soon will be listed here.
Abstract

The efficiency of translation termination is influenced by local contexts surrounding stop codons. In Saccharomyces cerevisiae, upstream and downstream sequences act synergistically to influence the translation termination efficiency. By analysing derivatives of a leaky stop codon context, we initially demonstrated that at least six nucleotides after the stop codon are a key determinant of readthrough efficiency in S. cerevisiae. We then developed a combinatorial-based strategy to identify poor 3' termination contexts. By screening a degenerate oligonucleotide library, we identified a consensus sequence -CA(A/G)N(U/C/G)A-, which promotes >5% readthrough efficiency when located downstream of a UAG stop codon. Potential base pairing between this stimulatory motif and regions close to helix 18 and 44 of the 18S rRNA provides a model for the effect of the 3' stop codon context on translation termination.

Citing Articles

Ribosomal A-site interactions with near-cognate tRNAs drive stop codon readthrough.

capkova Pavlikova Z, Miletinova P, Roithova A, Pospisilova K, Zahonova K, Kachale A Nat Struct Mol Biol. 2025; .

PMID: 39806023 DOI: 10.1038/s41594-024-01450-z.


Regulatory significance of terminator: A systematic approach for dissecting terminator-mediated enhancement of upstream mRNA stability.

Ren J, Zhang J, Mei Z, Shao J, Xu G, Li H Synth Syst Biotechnol. 2025; 10(1):326-335.

PMID: 39758116 PMC: 11696848. DOI: 10.1016/j.synbio.2024.11.006.


Optimization of ACE-tRNAs function in translation for suppression of nonsense mutations.

Porter J, Ko W, Sorensen E, Lueck J Nucleic Acids Res. 2024; 52(22):14112-14132.

PMID: 39673265 PMC: 11662937. DOI: 10.1093/nar/gkae1112.


The ABCF ATPase New1 resolves translation termination defects associated with specific tRNAArg and tRNALys isoacceptors in the P site.

Turnbull K, Paternoga H, von der Weth E, Egorov A, Pochopien A, Zhang Y Nucleic Acids Res. 2024; 52(19):12005-12020.

PMID: 39217469 PMC: 11514491. DOI: 10.1093/nar/gkae748.


Genome-scale quantification and prediction of pathogenic stop codon readthrough by small molecules.

Toledano I, Supek F, Lehner B Nat Genet. 2024; 56(9):1914-1924.

PMID: 39174735 PMC: 11387191. DOI: 10.1038/s41588-024-01878-5.


References
1.
Van Ryk D, Dahlberg A . Structural changes in the 530 loop of Escherichia coli 16S rRNA in mutants with impaired translational fidelity. Nucleic Acids Res. 1995; 23(17):3563-70. PMC: 307238. DOI: 10.1093/nar/23.17.3563. View

2.
Jacobs G, Stockwell P, Schrieber M, Tate W, Brown C . Transterm: a database of messenger RNA components and signals. Nucleic Acids Res. 1999; 28(1):293-5. PMC: 102492. DOI: 10.1093/nar/28.1.293. View

3.
Brown C, Stockwell P, Trotman C, Tate W . Sequence analysis suggests that tetra-nucleotides signal the termination of protein synthesis in eukaryotes. Nucleic Acids Res. 1990; 18(21):6339-45. PMC: 332501. DOI: 10.1093/nar/18.21.6339. View

4.
Mottagui-Tabar S, Tuite M, ISAKSSON L . The influence of 5' codon context on translation termination in Saccharomyces cerevisiae. Eur J Biochem. 1998; 257(1):249-54. DOI: 10.1046/j.1432-1327.1998.2570249.x. View

5.
Poole E, Major L, Mannering S, Tate W . Translational termination in Escherichia coli: three bases following the stop codon crosslink to release factor 2 and affect the decoding efficiency of UGA-containing signals. Nucleic Acids Res. 1998; 26(4):954-60. PMC: 147352. DOI: 10.1093/nar/26.4.954. View