» Articles » PMID: 11425873

Differential Dynamics of Alpha 5 Integrin, Paxillin, and Alpha-actinin During Formation and Disassembly of Adhesions in Migrating Cells

Overview
Journal J Cell Biol
Specialty Cell Biology
Date 2001 Jun 27
PMID 11425873
Citations 196
Authors
Affiliations
Soon will be listed here.
Abstract

To investigate the mechanisms by which adhesions form and disperse in migrating cells, we expressed alpha 5 integrin, alpha-actinin, and paxillin as green fluorescent protein (GFP) fusions. All localized with their endogenous counterparts and did not perturb migration when expressed at moderate levels. alpha 5-GFP also rescued the adhesive defects in CHO B2 cells, which are alpha 5 integrin deficient. In ruffling cells, alpha 5-GFP and alpha-actinin--GFP localized prominently at the leading edge in membrane protrusions. Of the three GFP fusion proteins that we examined, paxillin was the first component to appear visibly organized in protrusive regions of the cell. When a new protrusion formed, the paxillin appeared to remodel from older to newer adhesions at the leading edge. alpha-Actinin subsequently entered adhesions, which translocated toward the cell center, and inhibited paxillin turnover. The new adhesions formed from small foci of alpha-actinin--GFP and paxillin-GFP, which grew in size. Subsequently, alpha 5 integrin entered the adhesions to form visible complexes, which served to stabilize the adhesions. alpha 5-GFP also resided in endocytic vesicles that emanated from the leading edge of protrusions. Integrin vesicles at the cell rear moved toward the cell body. As cells migrated, alpha 5 vesicles also moved from a perinuclear region to the base of the lamellipodium. The alpha 5 vesicles colocalized with transferrin receptor and FM 4-64 dye. After adhesions broke down in the rear, alpha 5-GFP was found in fibrous structures behind the cell, whereas alpha-actinin--GFP and paxillin-GFP moved up the lateral edge of retracting cells as organized structures and then dissipated.

Citing Articles

Analysis of Light-Controlled Artificial Cell-Cell Adhesions.

Wegner S, Raab C Methods Mol Biol. 2024; 2840:245-254.

PMID: 39724357 DOI: 10.1007/978-1-0716-4047-0_18.


Migfilin promotes autophagic flux through direct interaction with SNAP29 and Vamp8.

Cai R, Bai P, Quan M, Ding Y, Wei W, Liu C J Cell Biol. 2024; 223(11).

PMID: 39283311 PMC: 11404564. DOI: 10.1083/jcb.202312119.


Proteolysis-free amoeboid migration of melanoma cells through crowded environments via bleb-driven worrying.

Driscoll M, Welf E, Weems A, Sapoznik E, Zhou F, Murali V Dev Cell. 2024; 59(18):2414-2428.e8.

PMID: 38870943 PMC: 11421976. DOI: 10.1016/j.devcel.2024.05.024.


A comparative analysis of paxillin and Hic-5 proximity interactomes.

Brock K, Alpha K, Brennan G, De Jong E, Luke E, Turner C Cytoskeleton (Hoboken). 2024; 82(1-2):12-31.

PMID: 38801098 PMC: 11599474. DOI: 10.1002/cm.21878.


Thy-1 (CD90)-regulated cell adhesion and migration of mesenchymal cells: insights into adhesomes, mechanical forces, and signaling pathways.

Valdivia A, Avalos A, Leyton L Front Cell Dev Biol. 2023; 11:1221306.

PMID: 38099295 PMC: 10720913. DOI: 10.3389/fcell.2023.1221306.


References
1.
BRETSCHER M . Endocytosis: relation to capping and cell locomotion. Science. 1984; 224(4650):681-6. DOI: 10.1126/science.6719108. View

2.
Longley R, Woods A, Fleetwood A, Cowling G, Gallagher J, Couchman J . Control of morphology, cytoskeleton and migration by syndecan-4. J Cell Sci. 1999; 112 ( Pt 20):3421-31. DOI: 10.1242/jcs.112.20.3421. View

3.
Izzard C . A precursor of the focal contact in cultured fibroblasts. Cell Motil Cytoskeleton. 1988; 10(1-2):137-42. DOI: 10.1002/cm.970100118. View

4.
BRETSCHER M . Endocytosis and recycling of the fibronectin receptor in CHO cells. EMBO J. 1989; 8(5):1341-8. PMC: 400960. DOI: 10.1002/j.1460-2075.1989.tb03514.x. View

5.
Schreiner C, Bauer J, Danilov Y, Hussein S, Sczekan M, Juliano R . Isolation and characterization of Chinese hamster ovary cell variants deficient in the expression of fibronectin receptor. J Cell Biol. 1989; 109(6 Pt 1):3157-67. PMC: 2115957. DOI: 10.1083/jcb.109.6.3157. View