An Inverse Oblique Effect in Human Vision
Overview
Affiliations
In the classic oblique effect contrast detection thresholds, orientation discrimination thresholds, and other psychophysical measures are found to be smallest for vertical or horizontal stimuli and significantly higher for stimuli near the +/-45 degrees obliques. Here we report a novel inverse oblique effect in which thresholds for detecting translational structure in random dot patterns [Glass, L. (1969). Moiré effect from random dots. Nature, 223, 578-580] are lowest for obliquely oriented structure and higher for either horizontal or vertical structure. Area summation experiments provide evidence that this results from larger pooling areas for oblique orientations in these patterns. The results can be explained quantitatively by a model for complex cells in which the final filtering stage in a filter-rectify-filter sequence is of significantly larger area for oblique orientations.
Feature-based interaction between masks and target in continuous flash suppression.
Drewes J, Witzel C, Zhu W Sci Rep. 2023; 13(1):4696.
PMID: 36949180 PMC: 10033634. DOI: 10.1038/s41598-023-31659-9.
Tracking the Migraine Cycle Using Visual Tasks.
Shepherd A Vision (Basel). 2020; 4(2).
PMID: 32365776 PMC: 7355979. DOI: 10.3390/vision4020023.
Yang D, FitzGibbon E, Miles F Vision Res. 2003; 43(4):431-43.
PMID: 12536000 PMC: 2441481. DOI: 10.1016/s0042-6989(02)00572-2.