Mutagenesis of Amino Acid Residues in the SHV-1 Beta-lactamase: the Premier Role of Gly238Ser in Penicillin and Cephalosporin Resistance
Overview
Biophysics
Authors
Affiliations
The recent availability of the SHV-1 beta-lactamase crystal structure provides a framework for the understanding of the functional role of amino acid residues in this enzyme. To that end, we have constructed by site-directed mutagenesis 18 variants of the SHV beta-lactamase: an extended spectrum group: Gly238Ser, Gly238Ser-Glu240Lys, Asp104Lys-Gly238Ser, Asp104Lys-Thr235Ser-Gly238Ser, Asp179Asn, Arg164His, and Arg164Ser; an inhibitor resistant group: Arg244Ser, Met69Ile, Met69Leu, and Ser130Gly; mutants that are synergistic with those that confer resistance to oxyimino-cephalosporins: Asp104Glu, Asp104Lys, Glu240Lys, and Glu240Gln; and structurally conserved mutants: Thr235Ser, Thr235Ala and Glu166Ala. Among the extended spectrum group the combination of high-level ampicillin and cephalosporin resistance was demonstrated in the Escherichia coli DH10B strains possessing the Gly238Ser mutation: Gly238Ser, Gly238Ser-Glu240Lys, Asp104Lys-Gly238Ser, and Asp104Lys-Thr235Ser-Gly238Ser. Of the inhibitor resistant group, the Ser130Gly mutant was the most resistant to ampicillin/clavulanate. Using a polyclonal anti-SHV antibody, we assayed steady state protein expression levels of the SHV beta-lactamase variants. Mutants with the Gly238Ser substitution were among the most highly expressed. The Gly238Ser substitution resulted in an improved relative k(cat)/K(m) value for cephaloridine and oxyimino-cephalosporins compared to SHV-1 and Met69Ile. In our comparative survey, the Gly238Ser and extended spectrum beta-lactamase variants containing this substitution exhibited the greatest substrate versatility against penicillins and cephalosporins and greatest protein expression. This defines a unique role of Gly238Ser in broad-spectrum beta-lactam resistance in this family of class A beta-lactamases.
Hujer A, Long S, Olsen R, Taracila M, Rojas L, Musser J Diagn Microbiol Infect Dis. 2020; 98(3):115149.
PMID: 32858260 PMC: 8519184. DOI: 10.1016/j.diagmicrobio.2020.115149.
Neubauer S, Madzgalla S, Marquet M, Klabunde A, Buttner B, Gohring A Antimicrob Agents Chemother. 2020; 64(7).
PMID: 32284385 PMC: 7318035. DOI: 10.1128/AAC.02293-19.
Knappenberger A, Reiss C, Strobel S Elife. 2018; 7.
PMID: 29877798 PMC: 6031431. DOI: 10.7554/eLife.36381.
Predicting allosteric mutants that increase activity of a major antibiotic resistance enzyme.
Latallo M, Cortina G, Faham S, Nakamoto R, Kasson P Chem Sci. 2017; 8(9):6484-6492.
PMID: 28989673 PMC: 5628580. DOI: 10.1039/c7sc02676e.
Papagiannitsis C, Tzouvelekis L, Tzelepi E, Miriagou V Antimicrob Agents Chemother. 2016; 61(3).
PMID: 28031195 PMC: 5328530. DOI: 10.1128/AAC.02070-16.