Tang X, Liu Y, Li S, Pei Y, Wei Q, Zhang L
PLoS One. 2024; 19(8):e0305781.
PMID: 39178225
PMC: 11343382.
DOI: 10.1371/journal.pone.0305781.
Palande S, Kaste J, Roberts M, Segura Aba K, Claucherty C, Dacon J
PLoS Biol. 2023; 21(12):e3002397.
PMID: 38051702
PMC: 10723737.
DOI: 10.1371/journal.pbio.3002397.
Li X, Jiang Z, Zhang C, Cai K, Wang H, Pan W
BMC Plant Biol. 2023; 23(1):484.
PMID: 37817059
PMC: 10566169.
DOI: 10.1186/s12870-023-04438-x.
Zou Z, Xiao Y, Zhang L, Zhao Y
Planta. 2023; 257(3):59.
PMID: 36807540
DOI: 10.1007/s00425-023-04092-5.
Liu M, Zhang S, Hu J, Sun W, Padilla J, He Y
Proc Natl Acad Sci U S A. 2019; 116(35):17572-17577.
PMID: 31405986
PMC: 6717248.
DOI: 10.1073/pnas.1905123116.
Involvement of Lhcb6 and Lhcb5 in Photosynthesis Regulation in Response to Abiotic Stress.
Peng X, Deng X, Tang X, Tan T, Zhang D, Liu B
Int J Mol Sci. 2019; 20(15).
PMID: 31357454
PMC: 6695650.
DOI: 10.3390/ijms20153665.
The unique photosynthetic apparatus of Pinaceae: analysis of photosynthetic complexes in Picea abies.
Grebe S, Trotta A, Bajwa A, Suorsa M, Gollan P, Jansson S
J Exp Bot. 2019; 70(12):3211-3225.
PMID: 30938447
PMC: 6598058.
DOI: 10.1093/jxb/erz127.
On a Cold Night: Transcriptomics of Grapevine Flower Unveils Signal Transduction and Impacted Metabolism.
Sawicki M, Rondeau M, Courteaux B, Rabenoelina F, Guerriero G, Gomes E
Int J Mol Sci. 2019; 20(5).
PMID: 30841651
PMC: 6429367.
DOI: 10.3390/ijms20051130.
Comparative physiological and leaf proteome analysis between drought-tolerant chickpea and drought-sensitive chickpea .
Cevik S, Akpinar G, Yildizli A, Kasap M, Karaosmanoglu K, Unyayar S
J Biosci. 2019; 44(1).
PMID: 30837371
Chlamydomonas reinhardtii PsbS Protein Is Functional and Accumulates Rapidly and Transiently under High Light.
Tibiletti T, Auroy P, Peltier G, Caffarri S
Plant Physiol. 2016; 171(4):2717-30.
PMID: 27329221
PMC: 4972282.
DOI: 10.1104/pp.16.00572.
Drought stress tolerance strategies revealed by RNA-Seq in two sorghum genotypes with contrasting WUE.
Fracasso A, Trindade L, Amaducci S
BMC Plant Biol. 2016; 16(1):115.
PMID: 27208977
PMC: 4875703.
DOI: 10.1186/s12870-016-0800-x.
Possible role of interference, protein noise, and sink effects in nonphotochemical quenching in photosynthetic complexes.
Berman G, Nesterov A, Gurvitz S, Sayre R
J Math Biol. 2016; 74(1-2):43-76.
PMID: 27139803
DOI: 10.1007/s00285-016-1016-2.
Comparative Transcriptomic Approaches Exploring Contamination Stress Tolerance in Salix sp. Reveal the Importance for a Metaorganismal de Novo Assembly Approach for Nonmodel Plants.
Brereton N, Gonzalez E, Marleau J, Guidi Nissim W, Labrecque M, Joly S
Plant Physiol. 2016; 171(1):3-24.
PMID: 27002060
PMC: 4854704.
DOI: 10.1104/pp.16.00090.
Nonphotochemical Chlorophyll Fluorescence Quenching: Mechanism and Effectiveness in Protecting Plants from Photodamage.
Ruban A
Plant Physiol. 2016; 170(4):1903-16.
PMID: 26864015
PMC: 4825125.
DOI: 10.1104/pp.15.01935.
Comparative proteomic analysis of a membrane-enriched fraction from flag leaves reveals responses to chemical hybridization agent SQ-1 in wheat.
Song Q, Wang S, Zhang G, Li Y, Li Z, Guo J
Front Plant Sci. 2015; 6:669.
PMID: 26379693
PMC: 4549638.
DOI: 10.3389/fpls.2015.00669.
Carotenoid-chlorophyll coupling and fluorescence quenching in aggregated minor PSII proteins CP24 and CP29.
Holleboom C, Gacek D, Liao P, Negretti M, Croce R, Walla P
Photosynth Res. 2015; 124(2):171-80.
PMID: 25744389
DOI: 10.1007/s11120-015-0113-1.
Site-specific nitrosoproteomic identification of endogenously S-nitrosylated proteins in Arabidopsis.
Hu J, Huang X, Chen L, Sun X, Lu C, Zhang L
Plant Physiol. 2015; 167(4):1731-46.
PMID: 25699590
PMC: 4378176.
DOI: 10.1104/pp.15.00026.
High light-dependent phosphorylation of photosystem II inner antenna CP29 in monocots is STN7 independent and enhances nonphotochemical quenching.
Betterle N, Ballottari M, Baginsky S, Bassi R
Plant Physiol. 2014; 167(2):457-71.
PMID: 25501945
PMC: 4326754.
DOI: 10.1104/pp.114.252379.
Comparison of the protective effectiveness of NPQ in Arabidopsis plants deficient in PsbS protein and zeaxanthin.
Ware M, Belgio E, Ruban A
J Exp Bot. 2014; 66(5):1259-70.
PMID: 25429003
PMC: 4339590.
DOI: 10.1093/jxb/eru477.
Regulation of the calcium-sensing receptor in both stomatal movement and photosynthetic electron transport is crucial for water use efficiency and drought tolerance in Arabidopsis.
Wang W, Liu T, Chen J, Han A, Simon M, Dong X
J Exp Bot. 2013; 65(1):223-34.
PMID: 24187420
PMC: 3883291.
DOI: 10.1093/jxb/ert362.