Roterman I, Stapor K, Konieczny L
BMC Bioinformatics. 2023; 24(1):425.
PMID: 37950210
PMC: 10638730.
DOI: 10.1186/s12859-023-05559-8.
Roterman I, Stapor K, Dulak D, Konieczny L
Int J Mol Sci. 2022; 23(16).
PMID: 36012765
PMC: 9409474.
DOI: 10.3390/ijms23169502.
Wang S, Lin H, Huang Z, He Y, Deng X, Xu Y
Biomolecules. 2022; 12(7).
PMID: 35883523
PMC: 9312471.
DOI: 10.3390/biom12070967.
Su H, Wang W, Du Z, Peng Z, Gao S, Cheng M
Adv Sci (Weinh). 2021; 8(24):e2102592.
PMID: 34719864
PMC: 8693034.
DOI: 10.1002/advs.202102592.
Domene S, Scaglia P, Gutierrez M, Domene H
Cells. 2021; 10(8).
PMID: 34440832
PMC: 8392544.
DOI: 10.3390/cells10082063.
Propensities of Amino Acid Pairings in Secondary Structure of Globular Proteins.
Nacar C
Protein J. 2020; 39(1):21-32.
PMID: 31933010
DOI: 10.1007/s10930-020-09880-6.
Chemical shift-based methods in NMR structure determination.
Nerli S, McShan A, Sgourakis N
Prog Nucl Magn Reson Spectrosc. 2019; 106-107:1-25.
PMID: 31047599
PMC: 6788782.
DOI: 10.1016/j.pnmrs.2018.03.002.
Computational protein structure refinement: Almost there, yet still so far to go.
Feig M
Wiley Interdiscip Rev Comput Mol Sci. 2019; 7(3).
PMID: 30613211
PMC: 6319934.
DOI: 10.1002/wcms.1307.
Experimental accuracy in protein structure refinement via molecular dynamics simulations.
Heo L, Feig M
Proc Natl Acad Sci U S A. 2018; 115(52):13276-13281.
PMID: 30530696
PMC: 6310835.
DOI: 10.1073/pnas.1811364115.
Reoptimized UNRES Potential for Protein Model Quality Assessment.
Faraggi E, Krupa P, Mozolewska M, Liwo A, Kloczkowski A
Genes (Basel). 2018; 9(12).
PMID: 30513992
PMC: 6315818.
DOI: 10.3390/genes9120601.
Combined approaches from physics, statistics, and computer science for protein structure prediction: (unity is strength)?.
Delarue M, Koehl P
F1000Res. 2018; 7.
PMID: 30079234
PMC: 6058471.
DOI: 10.12688/f1000research.14870.1.
Structure refinement of membrane proteins via molecular dynamics simulations.
Dutagaci B, Heo L, Feig M
Proteins. 2018; 86(7):738-750.
PMID: 29675899
PMC: 6013386.
DOI: 10.1002/prot.25508.
Critical assessment of methods of protein structure prediction (CASP)-Round XII.
Moult J, Fidelis K, Kryshtafovych A, Schwede T, Tramontano A
Proteins. 2017; 86 Suppl 1:7-15.
PMID: 29082672
PMC: 5897042.
DOI: 10.1002/prot.25415.
Finding the needle in the haystack: towards solving the protein-folding problem computationally.
Li B, Fooksa M, Heinze S, Meiler J
Crit Rev Biochem Mol Biol. 2017; 53(1):1-28.
PMID: 28976219
PMC: 6790072.
DOI: 10.1080/10409238.2017.1380596.
Critical Features of Fragment Libraries for Protein Structure Prediction.
Trevizani R, Custodio F, Dos Santos K, Dardenne L
PLoS One. 2017; 12(1):e0170131.
PMID: 28085928
PMC: 5235372.
DOI: 10.1371/journal.pone.0170131.
Predicting secondary structures, contact numbers, and residue-wise contact orders of native protein structures from amino acid sequences using critical random networks.
Kinjo A, Nishikawa K
Biophysics (Nagoya-shi). 2016; 1:67-74.
PMID: 27857554
PMC: 5036631.
DOI: 10.2142/biophysics.1.67.
Does Cation Size Affect Occupancy and Electrostatic Screening of the Nucleic Acid Ion Atmosphere?.
Gebala M, Bonilla S, Bisaria N, Herschlag D
J Am Chem Soc. 2016; 138(34):10925-34.
PMID: 27479701
PMC: 5010015.
DOI: 10.1021/jacs.6b04289.
The Folding of de Novo Designed Protein DS119 via Molecular Dynamics Simulations.
Wang M, Hu J, Zhang Z
Int J Mol Sci. 2016; 17(5).
PMID: 27128902
PMC: 4881441.
DOI: 10.3390/ijms17050612.
Molecular dynamics simulations: advances and applications.
Hospital A, Goni J, Orozco M, Gelpi J
Adv Appl Bioinform Chem. 2015; 8:37-47.
PMID: 26604800
PMC: 4655909.
DOI: 10.2147/AABC.S70333.
Study of V2 vasopressin receptor hormone binding site using in silico methods.
Sebti Y, Sardari S, Mohammad Sadeghi H, Ghahremani M, Innamorati G
Res Pharm Sci. 2015; 10(4):288-94.
PMID: 26600856
PMC: 4623618.