» Articles » PMID: 11317346

Chirality Inversion in the Bilirubin Molecular Exciton

Overview
Journal Chirality
Publisher Wiley
Date 2001 Apr 24
PMID 11317346
Authors
Affiliations
Soon will be listed here.
Abstract

The bichromophoric pigment bilirubin acts as a molecular exciton in its UV-visible and circular dichroism (CD) spectroscopy. In both polar and nonpolar solvents, an optically active analog, (beta R,beta 'R)-dimethylmesobilirubin-XIII alpha (1), exhibits intense bisignate CD Cotton effects in the region of its long wavelength UV-vis absorption near 400 nm: Delta epsilon(434)(max) + 337, Delta epsilon(389)(max) - 186 (CHCl(3)), and Delta epsilon(431)(max) + 285, Delta epsilon(386)(max) - 177 (CH(3)OH). However, introduction of an amine into a CHCl(3) solution of 1 causes the Cotton effect signs to become inverted, e.g., after addition of NH(3), Delta epsilon(433)(max) - 345, Delta epsilon(389)(max) + 243, and after addition of ethylene diamine, Delta epsilon(435)(max) - 420, Delta epsilon(390)(max) + 299. The sign inversions imply inversion of molecular chirality of the bilirubin and the phenomenon appears to be general for amines, including alpha,omega-diamines. 1,8-Diaminooctane was found to be more effective than longer or shorter chain analogs in producing CD sign inversion.