» Articles » PMID: 11299312

Mechanisms of Inverse Agonism of Antipsychotic Drugs at the D(2) Dopamine Receptor: Use of a Mutant D(2) Dopamine Receptor That Adopts the Activated Conformation

Overview
Journal J Neurochem
Specialties Chemistry
Neurology
Date 2001 Apr 12
PMID 11299312
Citations 15
Authors
Affiliations
Soon will be listed here.
Abstract

The antipsychotic drugs have been shown to be inverse agonists at the D(2) dopamine receptor. We have examined the mechanism of this inverse agonism by making mutations in residue T343 in the base of the sixth transmembrane spanning region of the receptor. T343R, T343S and T343K mutant D(2) dopamine receptors were made and the T343R mutant characterized in detail. The T343R mutant D(2) dopamine receptor exhibits properties of a receptor that resides more in the activated state, namely increased agonist binding affinity (independent of G-protein coupling and dependent on agonist efficacy), increased agonist potency in functional tests (adenylyl cyclase inhibition) and increased inverse agonist effects. The binding of agonists to the mutant receptor also shows sensitivity to sodium ions, unlike the native receptor, so that isomerization of the receptor to its inactive state may be driven by sodium ions. The binding of inverse agonists to the receptor is, however, unaffected by the mutation. We conclude that inverse agonism at this receptor is not achieved by the inverse agonist binding preferentially to the non-activated state of the receptor over the activated state. Rather the inverse agonist appears to bind to all forms of the receptor but then renders the receptor inactive.

Citing Articles

Molecular mechanisms of inverse agonism via κ-opioid receptor-G protein complexes.

Tyson A, Khan S, Motiwala Z, Han G, Zhang Z, Ranjbar M Nat Chem Biol. 2025; .

PMID: 39775170 DOI: 10.1038/s41589-024-01812-0.


CHL1 depletion affects dopamine receptor D2-dependent modulation of mouse behavior.

Fernandes L, Kleene R, Congiu L, Freitag S, Kneussel M, Loers G Front Behav Neurosci. 2023; 17:1288509.

PMID: 38025382 PMC: 10665519. DOI: 10.3389/fnbeh.2023.1288509.


Signaling-Biased and Constitutively Active Dopamine D2 Receptor Variant.

Rodriguez-Contreras D, Condon A, Buck D, Asad N, Dore T, Verbeek D ACS Chem Neurosci. 2021; 12(11):1873-1884.

PMID: 33974399 PMC: 8528033. DOI: 10.1021/acschemneuro.0c00712.


Agonist high- and low-affinity states of dopamine D₂ receptors: methods of detection and clinical implications.

van Wieringen J, Booij J, Shalgunov V, Elsinga P, Michel M Naunyn Schmiedebergs Arch Pharmacol. 2012; 386(2):135-54.

PMID: 23224422 DOI: 10.1007/s00210-012-0817-0.


Clozapine, atypical antipsychotics, and the benefits of fast-off D2 dopamine receptor antagonism.

Vauquelin G, Bostoen S, Vanderheyden P, Seeman P Naunyn Schmiedebergs Arch Pharmacol. 2012; 385(4):337-72.

PMID: 22331262 DOI: 10.1007/s00210-012-0734-2.