» Articles » PMID: 11298185

Metabolic Cardiomyopathies

Overview
Publisher Wiley
Specialty Pathology
Date 2001 Apr 12
PMID 11298185
Citations 47
Authors
Affiliations
Soon will be listed here.
Abstract

The energy needed by cardiac muscle to maintain proper function is supplied by adenosine Ariphosphate primarily (ATP) production through breakdown of fatty acids. Metabolic cardiomyopathies can be caused by disturbances in metabolism, for example diabetes mellitus, hypertrophy and heart failure or alcoholic cardiomyopathy. Deficiency in enzymes of the mitochondrial beta-oxidation show a varying degree of cardiac manifestation. Aberrations of mitochondrial DNA lead to a wide variety of cardiac disorders, without any obvious correlation between genotype and phenotype. A completely different pathogenetic model comprises cardiac manifestation of systemic metabolic diseases caused by deficiencies of various enzymes in a variety of metabolic pathways. Examples of these disorders are glycogen storage diseases (e.g. glycogenosis type II and III), lysosomal storage diseases (e.g. Niemann-Pick disease, Gaucher disease, I-cell disease, various types of mucopolysaccharidoses, GM1 gangliosidosis, galactosialidosis, carbohydrate-deficient glycoprotein syndromes and Sandhoff's disease). There are some systemic diseases which can also affect the heart, for example triosephosphate isomerase deficiency, hereditary haemochromatosis, CD 36 defect or propionic acidaemia.

Citing Articles

The Chest Pain That Never Went Away: A Case of Complex Cardiopulmonary Pathologies in a 64-Year-Old Caucasian Male.

Bilal M, Malik M, Ansari A, Bahro G, Jaiswal A Cureus. 2024; 16(7):e64746.

PMID: 39156238 PMC: 11329334. DOI: 10.7759/cureus.64746.


Autophagy and mitophagy as potential therapeutic targets in diabetic heart condition: Harnessing the power of nanotheranostics.

Nag S, Mitra O, Maturi B, Kaur S, Saini A, Nama M Asian J Pharm Sci. 2024; 19(3):100927.

PMID: 38948399 PMC: 11214300. DOI: 10.1016/j.ajps.2024.100927.


Class I and II Histone Deacetylase Inhibitors as Therapeutic Modulators of Dilated Cardiac Tissue-Derived Mesenchymal Stem/Stromal Cells.

Miksiunas R, Labeit S, Bironaite D Int J Mol Sci. 2024; 25(12).

PMID: 38928463 PMC: 11203858. DOI: 10.3390/ijms25126758.


A Meta-Analysis Approach to Gene Regulatory Network Inference Identifies Key Regulators of Cardiovascular Diseases.

Pepe G, Appierdo R, Ausiello G, Helmer-Citterich M, Gherardini P Int J Mol Sci. 2024; 25(8).

PMID: 38673810 PMC: 11049946. DOI: 10.3390/ijms25084224.


Precision therapy in dilated cardiomyopathy: Pipedream or paradigm shift?.

Javed S, Halliday B Camb Prism Precis Med. 2024; 1:e34.

PMID: 38550947 PMC: 10953759. DOI: 10.1017/pcm.2023.24.


References
1.
Marin-Garcia J, Ananthakrishnan R, Gonzalvo A, Goldenthal M . Novel mutations in mitochondrial cytochrome b in fatal post partum cardiomyopathy. J Inherit Metab Dis. 1995; 18(1):77-8. DOI: 10.1007/BF00711378. View

2.
Christodoulou J, McInnes R, Jay V, Wilson G, Becker L, Lehotay D . Barth syndrome: clinical observations and genetic linkage studies. Am J Med Genet. 1994; 50(3):255-64. DOI: 10.1002/ajmg.1320500309. View

3.
Strauss A, Johnson M . The genetic basis of pediatric cardiovascular disease. Semin Perinatol. 1996; 20(6):564-76. DOI: 10.1016/s0146-0005(96)80069-3. View

4.
Moalic J, Charlemagne D, Mansier P, Chevalier B, Swynghedauw B . Cardiac hypertrophy and failure--a disease of adaptation. Modifications in membrane proteins provide a molecular basis for arrhythmogenicity. Circulation. 1993; 87(5 Suppl):IV21-6. View

5.
Taniike M, Fukushima H, Yanagihara I, Tsukamoto H, Tanaka J, Fujimura H . Mitochondrial tRNA(Ile) mutation in fatal cardiomyopathy. Biochem Biophys Res Commun. 1992; 186(1):47-53. DOI: 10.1016/s0006-291x(05)80773-9. View