» Articles » PMID: 11158287

RNA Binding Domain of Telomerase Reverse Transcriptase

Overview
Journal Mol Cell Biol
Specialty Cell Biology
Date 2001 Feb 7
PMID 11158287
Citations 98
Authors
Affiliations
Soon will be listed here.
Abstract

Telomerase is a ribonucleoprotein reverse transcriptase that extends the ends of chromosomes. The two telomerase subunits essential for catalysis in vitro are the telomerase reverse transcriptase (TERT) and the telomerase RNA. Using truncations and site-specific mutations, we identified sequence elements of TERT and telomerase RNA required for catalytic activity and protein-RNA interaction for Tetrahymena thermophila telomerase. We found that the TERT amino and carboxyl termini, although evolutionarily poorly conserved, are nonetheless important for catalytic activity. In contrast, high-affinity telomerase RNA binding requires only a small region in the amino terminus of TERT. Surprisingly, the TERT region necessary and sufficient for telomerase RNA binding is completely separable from the reverse transcriptase motifs. The minimal Tetrahymena TERT RNA binding domain contains two sequence motifs with ciliate-specific conservation and one TERT motif with conservation across all species. With human TERT, we demonstrate that a similar region within the TERT amino terminus is essential for human telomerase RNA binding as well. Finally, we defined the Tetrahymena telomerase RNA sequences that are essential for TERT interaction. We found that a four-nucleotide region 5' of the template is critical for TERT binding and that the 5' end of telomerase RNA is sufficient for TERT binding. Our results reveal at least one evolutionarily conserved molecular mechanism by which the telomerase reverse transcriptase is functionally specialized for obligate use of an internal RNA template.

Citing Articles

Giardia telomeres and telomerase.

Lagunas-Rangel F Parasitol Res. 2024; 123(4):179.

PMID: 38584235 PMC: 10999387. DOI: 10.1007/s00436-024-08200-6.


Advances in understanding telomerase assembly.

Klump B, Schmidt J Biochem Soc Trans. 2023; 51(6):2093-2101.

PMID: 38108475 PMC: 10754283. DOI: 10.1042/BST20230269.


Many Functions of Telomerase Components: Certainties, Doubts, and Inconsistencies.

Udroiu I, Marinaccio J, Sgura A Int J Mol Sci. 2022; 23(23).

PMID: 36499514 PMC: 9736166. DOI: 10.3390/ijms232315189.


Functional interaction between compound heterozygous TERT mutations causes severe telomere biology disorder.

Niaz A, Truong J, Manoleras A, Fox L, Blombery P, Vasireddy R Blood Adv. 2022; 6(12):3779-3791.

PMID: 35477117 PMC: 9631560. DOI: 10.1182/bloodadvances.2022007029.


Molecular insight of dyskeratosis congenita: Defects in telomere length homeostasis.

Dorgaleleh S, Naghipoor K, Hajimohammadi Z, Dastaviz F, Oladnabi M J Clin Transl Res. 2022; 8(1):20-30.

PMID: 35097237 PMC: 8791241.


References
1.
Romero D, Blackburn E . A conserved secondary structure for telomerase RNA. Cell. 1991; 67(2):343-53. DOI: 10.1016/0092-8674(91)90186-3. View

2.
Greider C, Blackburn E . A telomeric sequence in the RNA of Tetrahymena telomerase required for telomere repeat synthesis. Nature. 1989; 337(6205):331-7. DOI: 10.1038/337331a0. View

3.
Autexier C, Greider C . Functional reconstitution of wild-type and mutant Tetrahymena telomerase. Genes Dev. 1994; 8(5):563-75. DOI: 10.1101/gad.8.5.563. View

4.
Lingner J, Hendrick L, Cech T . Telomerase RNAs of different ciliates have a common secondary structure and a permuted template. Genes Dev. 1994; 8(16):1984-98. DOI: 10.1101/gad.8.16.1984. View

5.
Bhattacharyya A, Blackburn E . Architecture of telomerase RNA. EMBO J. 1994; 13(23):5721-31. PMC: 395538. DOI: 10.1002/j.1460-2075.1994.tb06910.x. View