Evidence That Fragile X Mental Retardation Protein is a Negative Regulator of Translation
Overview
Molecular Biology
Affiliations
Fragile X syndrome is a common form of inherited mental retardation. Most fragile X patients exhibit mutations in the fragile X mental retardation gene 1 (FMR1) that lead to transcriptional silencing and hence to the absence of the fragile X mental retardation protein (FMRP). Since FMRP is an RNA-binding protein which associates with polyribosomes, it had been proposed to function as a regulator of gene expression at the post-transcriptional level. In the present study, we show that FMRP strongly inhibits translation of various mRNAs at nanomolar concentrations in both rabbit reticulocyte lysate and microinjected Xenopus laevis oocytes. This effect is specific for FMRP, since other proteins with similar RNA-binding domains, including the autosomal homologues of FMRP, FXR1 and FXR2, failed to suppress translation in the same concentration range. Strikingly, a disease-causing Ile-->Asn substitution at amino acid position 304 (I304N) renders FMRP incapable of interfering with translation in both test systems. Initial studies addressing the underlying mechanism of inhibition suggest that FMRP inhibits the assembly of 80S ribosomes on the target mRNAs. The failure of FMRP I304N to suppress translation is not due to its reduced affinity for mRNA or its interacting proteins FXR1 and FXR2. Instead, the I304N point mutation severely impairs homo-oligomerization of FMRP. Our data support the notion that inhibition of translation may be a function of FMRP in vivo. We further suggest that the failure of FMRP to oligomerize, caused by the I304N mutation, may contribute to the pathophysiological events leading to fragile X syndrome.
FMR1 genetically interacts with DISC1 to regulate glutamatergic synaptogenesis.
Honda T, Kurita K, Arai Y, Pandey H, Sawa A, Furukubo-Tokunaga K Schizophrenia (Heidelb). 2024; 10(1):112.
PMID: 39604386 PMC: 11603133. DOI: 10.1038/s41537-024-00532-7.
Crosstalk between ubiquitination and translation in neurodevelopmental disorders.
Elu N, Subash S, Louros S Front Mol Neurosci. 2024; 17:1398048.
PMID: 39286313 PMC: 11402904. DOI: 10.3389/fnmol.2024.1398048.
Heimdorfer D, Vorleuter A, Eschlbock A, Spathopoulou A, Suarez-Cubero M, Farhan H Am J Hum Genet. 2024; 111(7):1383-1404.
PMID: 38908375 PMC: 11267527. DOI: 10.1016/j.ajhg.2024.05.023.
Weisz E, Fenton A, Jongens T NPJ Metab Health Dis. 2024; 2.
PMID: 38741938 PMC: 11090494. DOI: 10.1038/s44324-024-00004-7.
van den Akker G, Chabronova A, Housmans B, van der Vloet L, Surtel D, Cremers A Int J Mol Sci. 2024; 25(9).
PMID: 38732249 PMC: 11084827. DOI: 10.3390/ijms25095031.