A Novel Method for Estimating Substitution Rate Variation Among Sites in a Large Dataset of Homologous DNA Sequences
Overview
Affiliations
We present here a novel method to estimate the site-specific relative variability in large sets of homologous sequences. It is based on the simple idea that the more closely related are the compared sequences, the higher the probability of observing nucleotide changes at rapidly evolving sites. A simulation study has been carried out to support the reliability of the method, which has been applied also to analyzing the site variability of all available human sequences corresponding to the two hypervariable regions of the mitochondrial D-loop.
McCormick E, Lott M, Dulik M, Shen L, Attimonelli M, Vitale O Hum Mutat. 2020; 41(12):2028-2057.
PMID: 32906214 PMC: 7717623. DOI: 10.1002/humu.24107.
Diroma M, Lubisco P, Attimonelli M BMC Bioinformatics. 2017; 17(Suppl 12):338.
PMID: 28185569 PMC: 5123245. DOI: 10.1186/s12859-016-1193-4.
Clima R, Preste R, Calabrese C, Diroma M, Santorsola M, Scioscia G Nucleic Acids Res. 2016; 45(D1):D698-D706.
PMID: 27899581 PMC: 5210550. DOI: 10.1093/nar/gkw1066.
A comprehensive characterization of rare mitochondrial DNA variants in neuroblastoma.
Calabrese F, Clima R, Pignataro P, Lasorsa V, Hogarty M, Castellano A Oncotarget. 2016; 7(31):49246-49258.
PMID: 27351283 PMC: 5226504. DOI: 10.18632/oncotarget.10271.
Santorsola M, Calabrese C, Girolimetti G, Diroma M, Gasparre G, Attimonelli M Hum Genet. 2015; 135(1):121-36.
PMID: 26621530 PMC: 4698288. DOI: 10.1007/s00439-015-1615-9.