» Articles » PMID: 11139040

Parameter Estimation Methods for Single Neuron Models

Overview
Specialties Biology
Neurology
Date 2001 Jan 4
PMID 11139040
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

With the advancement in computer technology, it has become possible to fit complex models to neuronal data. In this work, we test how two methods can estimate parameters of simple neuron models (passive soma) to more complex ones (neuron with one dendritic cylinder and two active conductances). The first method uses classical voltage traces resulting from current pulses injection (time domain), while the second uses measures of the neuron's response to sinusoidal stimuli (frequency domain). Both methods estimate correctly the parameters in all cases studied. However, the time-domain method is slower and more prone to estimation errors in the cable parameters than the frequency-domain method. Because with noisy data the goodness of fit does not distinguish between different solutions, we suggest that running the estimation procedure a large number of times might help find a good solution and can provide information about the interactions between parameters. Also, because the formulation used for the model's response in the frequency domain is analytical, one can derive a local sensitivity analysis for each parameter. This analysis indicates how well a parameter is likely to be estimated and helps choose an optimal stimulation protocol. Finally, the tests suggest a strategy for fitting single-cell models using the two methods examined.

Citing Articles

Is realistic neuronal modeling realistic?.

Almog M, Korngreen A J Neurophysiol. 2016; 116(5):2180-2209.

PMID: 27535372 PMC: 5102320. DOI: 10.1152/jn.00360.2016.


A self-organizing state-space-model approach for parameter estimation in hodgkin-huxley-type models of single neurons.

Vavoulis D, Straub V, Aston J, Feng J PLoS Comput Biol. 2012; 8(3):e1002401.

PMID: 22396632 PMC: 3291554. DOI: 10.1371/journal.pcbi.1002401.


Efficient fitting of conductance-based model neurons from somatic current clamp.

Lepora N, Overton P, Gurney K J Comput Neurosci. 2011; 32(1):1-24.

PMID: 21611777 DOI: 10.1007/s10827-011-0331-2.


Neuronal firing sensitivity to morphologic and active membrane parameters.

Weaver C, Wearne S PLoS Comput Biol. 2008; 4(1):e11.

PMID: 18208320 PMC: 2211531. DOI: 10.1371/journal.pcbi.0040011.


Parameter estimation for bursting neural models.

Tien J, Guckenheimer J J Comput Neurosci. 2007; 24(3):358-73.

PMID: 17999167 DOI: 10.1007/s10827-007-0060-8.


References
1.
Tabak J, Moore L . Simulation and parameter estimation study of a simple neuronal model of rhythm generation: role of NMDA and non-NMDA receptors. J Comput Neurosci. 1998; 5(2):209-35. DOI: 10.1023/a:1008826201879. View

2.
Surkis A, Peskin C, Tranchina D, Leonard C . Recovery of cable properties through active and passive modeling of subthreshold membrane responses from laterodorsal tegmental neurons. J Neurophysiol. 1998; 80(5):2593-607. DOI: 10.1152/jn.1998.80.5.2593. View

3.
White J, Manis P, Young E . The parameter identification problem for the somatic shunt model. Biol Cybern. 1992; 66(4):307-18. DOI: 10.1007/BF00203667. View

4.
Kawato M . Cable properties of a neuron model with non-uniform membrane resistivity. J Theor Biol. 1984; 111(1):149-69. DOI: 10.1016/s0022-5193(84)80202-7. View

5.
Moore L, Christensen B . White noise analysis of cable properties of neuroblastoma cells and lamprey central neurons. J Neurophysiol. 1985; 53(3):636-51. DOI: 10.1152/jn.1985.53.3.636. View