» Articles » PMID: 11136256

Multiplex Allele-specific Target Amplification Based on PCR Suppression

Overview
Specialty Science
Date 2001 Jan 3
PMID 11136256
Citations 21
Authors
Affiliations
Soon will be listed here.
Abstract

We have developed a strategy for multiplex PCR based on PCR suppression. PCR suppression allows DNA target amplification with only one sequence-specific primer per target and a second primer that is common for all targets. Therefore, an n-plex PCR would require only n + 1 primers. We have demonstrated uniform, efficient amplification of targeted sequences in 14-plex PCR. The high specificity of suppression PCR also provides multiplexed amplification with allele specificity. Multiplexed PCR was used to develop assays for genotyping DNA samples from cystic fibrosis-affected individuals. The new approach greatly simplifies primer design, significantly increases the PCR multiplexing level, and decreases the overall primer cost. In addition, this assay is more readily amenable to automation and is therefore suitable for high-throughput genetic diagnostics.

Citing Articles

AAV vector-derived elements integrate into Cas9-generated double-strand breaks and disrupt gene transcription.

Bazick H, Mao H, Niehaus J, Wolter J, Zylka M Mol Ther. 2024; 32(11):4122-4137.

PMID: 39367606 PMC: 11573598. DOI: 10.1016/j.ymthe.2024.09.032.


Suppression PCR-Based Selective Enrichment Sequencing for Pathogen and Antimicrobial Resistance Detection on Cell-Free DNA in Sepsis-A Targeted, Blood Culture-Independent Approach for Rapid Pathogen and Resistance Diagnostics in Septic Patients.

Sonntag M, Elgeti V, Vainshtein Y, Jenner L, Mueller J, Brenner T Int J Mol Sci. 2024; 25(10).

PMID: 38791501 PMC: 11121775. DOI: 10.3390/ijms25105463.


Novel CRISPR-based sequence specific enrichment methods for target loci and single base mutations.

Steele J, Stevens R, Cabrera O, Bassill G, Cramer S, Guzman F PLoS One. 2020; 15(12):e0243781.

PMID: 33362267 PMC: 7757808. DOI: 10.1371/journal.pone.0243781.


Validation of use of the miniPCR thermocycler for Ebola and Zika virus detection.

Gonzalez-Gonzalez E, Mendoza-Ramos J, Pedroza S, Cuellar-Monterrubio A, Marquez-Ipina A, Lira-Serhan D PLoS One. 2019; 14(5):e0215642.

PMID: 31071117 PMC: 6508694. DOI: 10.1371/journal.pone.0215642.


A Diagnostic Device for In-Situ Detection of Swine Viral Diseases: The SWINOSTICS Project.

Montagnese C, Barattini P, Giusti A, Balka G, Bruno U, Bossis I Sensors (Basel). 2019; 19(2).

PMID: 30669504 PMC: 6359211. DOI: 10.3390/s19020407.


References
1.
Brownie J, Shawcross S, Theaker J, Whitcombe D, Ferrie R, Newton C . The elimination of primer-dimer accumulation in PCR. Nucleic Acids Res. 1997; 25(16):3235-41. PMC: 146890. DOI: 10.1093/nar/25.16.3235. View

2.
Gerry N, Witowski N, Day J, Hammer R, Barany G, BARANY F . Universal DNA microarray method for multiplex detection of low abundance point mutations. J Mol Biol. 1999; 292(2):251-62. DOI: 10.1006/jmbi.1999.3063. View

3.
Chamberlain J, Gibbs R, Ranier J, Nguyen P, Caskey C . Deletion screening of the Duchenne muscular dystrophy locus via multiplex DNA amplification. Nucleic Acids Res. 1988; 16(23):11141-56. PMC: 339001. DOI: 10.1093/nar/16.23.11141. View

4.
Cotton R . Detection of single base changes in nucleic acids. Biochem J. 1989; 263(1):1-10. PMC: 1133383. DOI: 10.1042/bj2630001. View

5.
Norby S, Lestienne P, Nelson I, Rosenberg T . Mutation detection in Leber's hereditary optic neuropathy by PCR with allele-specific priming. Biochem Biophys Res Commun. 1991; 175(2):631-6. DOI: 10.1016/0006-291x(91)91612-g. View