Zou G, Zou L
Stat Med. 2024; 43(28):5366-5379.
PMID: 39415652
PMC: 11586912.
DOI: 10.1002/sim.10247.
Abbott M, Nahum-Shani I, Lam C, Potter L, Wetter D, Dempsey W
Stat Med. 2024; 43(21):4163-4177.
PMID: 39030763
PMC: 11338709.
DOI: 10.1002/sim.10171.
Li Y, Oravecz Z, Ji L, Chow S
Multivariate Behav Res. 2024; :1-29.
PMID: 38997153
PMC: 11724938.
DOI: 10.1080/00273171.2024.2371816.
Dutta S, Molenberghs G, Chakraborty A
J Appl Stat. 2022; 49(9):2228-2245.
PMID: 35755088
PMC: 9225235.
DOI: 10.1080/02664763.2021.1897971.
Agogo G, Murphy T, McAvay G, Allore H
Ann Epidemiol. 2019; 35:53-58.
PMID: 31085069
PMC: 6626675.
DOI: 10.1016/j.annepidem.2019.04.008.
Joint modeling of multiple longitudinal cost outcomes using multivariate generalized linear mixed models.
Gebregziabher M, Zhao Y, Dismuke C, Axon N, Hunt K, Egede L
Health Serv Outcomes Res Methodol. 2018; 13(1):39-57.
PMID: 30555270
PMC: 6290916.
A copula model for joint modeling of longitudinal and time-invariant mixed outcomes.
Kurum E, Jeske D, Behrendt C, Lee P
Stat Med. 2018; 37(27):3931-3943.
PMID: 29961946
PMC: 8589462.
DOI: 10.1002/sim.7855.
Time-varying copula models for longitudinal data.
Kurum E, Hughes J, Li R, Shiffman S
Stat Interface. 2018; 11(2):203-221.
PMID: 29686744
PMC: 5909848.
DOI: 10.4310/SII.2018.v11.n2.a1.
Dynamic Latent Trait Models with Mixed Hidden Markov Structure for Mixed Longitudinal Outcomes.
Zhang Y, Berhane K
J Appl Stat. 2017; 43(4):704-720.
PMID: 29167590
PMC: 5695931.
DOI: 10.1080/02664763.2015.1077373.
Estimators for longitudinal latent exposure models: examining measurement model assumptions.
Sanchez B, Kim S, Sammel M
Stat Med. 2017; 36(13):2048-2066.
PMID: 28239905
PMC: 5418122.
DOI: 10.1002/sim.7268.
Evolution of association between renal and liver functions while awaiting heart transplant: An application using a bivariate multiphase nonlinear mixed effects model.
Rajeswaran J, Blackstone E, Barnard J
Stat Methods Med Res. 2016; 27(7):2216-2230.
PMID: 27856959
PMC: 5433933.
DOI: 10.1177/0962280216678022.
Parameter Expanded Algorithms for Bayesian Latent Variable Modeling of Genetic Pleiotropy Data.
Xu L, Craiu R, Sun L, Paterson A
J Comput Graph Stat. 2016; 25(2):405-425.
PMID: 27752219
PMC: 5064966.
DOI: 10.1080/10618600.2014.988337.
TIME-VARYING COEFFICIENT MODELS FOR JOINT MODELING BINARY AND CONTINUOUS OUTCOMES IN LONGITUDINAL DATA.
Kurum E, Li R, Shiffman S, Yao W
Stat Sin. 2016; 26(3):979-1000.
PMID: 27667908
PMC: 5033066.
DOI: 10.5705/ss.2014.213.
A semivarying joint model for longitudinal binary and continuous outcomes.
Kurum E, Hughes J, Li R
Can J Stat. 2016; 44(1):44-57.
PMID: 27667895
PMC: 5033063.
DOI: 10.1002/cjs.11273.
Selection of latent variables for multiple mixed-outcome models.
Zhou L, Lin H, Song X, Li Y
Scand Stat Theory Appl. 2016; 41(4):1064-1082.
PMID: 27642219
PMC: 5026194.
DOI: 10.1111/sjos.12084.
Multivariate analysis of longitudinal rates of change.
Bryan M, Heagerty P
Stat Med. 2016; 35(28):5117-5134.
PMID: 27417129
PMC: 5097016.
DOI: 10.1002/sim.7035.
Longitudinal latent variable models given incompletely observed biomarkers and covariates.
Ren C, Shin Y
Stat Med. 2016; 35(26):4729-4745.
PMID: 27377366
PMC: 5057187.
DOI: 10.1002/sim.7022.
Log-gamma linear-mixed effects models for multiple outcomes with application to a longitudinal glaucoma study.
Zhang P, Luo D, Li P, Sharpsten L, Medeiros F
Biom J. 2015; 57(5):766-76.
PMID: 26075565
PMC: 4558301.
DOI: 10.1002/bimj.201300001.
Latent variable models for gene-environment interactions in longitudinal studies with multiple correlated exposures.
Tao Y, Sanchez B, Mukherjee B
Stat Med. 2014; 34(7):1227-41.
PMID: 25545894
PMC: 4355187.
DOI: 10.1002/sim.6401.
Using a Bayesian latent variable approach to detect pleiotropy in the Genetic Analysis Workshop 18 data.
Xu L, Craiu R, Derkach A, Paterson A, Sun L
BMC Proc. 2014; 8:S77.
PMID: 25519405
PMC: 4143687.
DOI: 10.1186/1753-6561-8-S1-S77.