Effects of Heavy Metals on Phospholipase C in Gill and Digestive Gland of the Marine Mussel Mytilus Galloprovincialis Lam
Overview
Authors
Affiliations
We studied the in vivo and in vitro effects of Hg2+ and Cu2+ on the activity of phospholipase C (PLC), specific for phosphatidylinositol 4,5-bisphosphate, in the mussel (Mytilus galloprovincialis Lam). The enzyme activity was assayed in tissue homogenates from gills and digestive gland. The toxic effect of Hg2+ appeared to be stronger than that of Cu2+ both in vitro and in vivo, especially for the digestive gland. In in vitro tests, Hg2+ was able to inhibit PLC activity when added directly to the reaction mixture. Conversely, Cu2+ was effective only after preincubation, suggesting that the effect of the metal may be derived from lipid peroxidation due to Cu2+-induced oxyradical production. Treatment of mussels with sublethal concentrations of Hg2+ or Cu2+ in vivo produced significant PLC inhibition after 1 or 4 days, respectively. A recovery was reached after 7 days of in vivo metal incubation. Data indicate that in mussel gills and digestive gland heavy metals impair PLC activity, thereby affecting IP3-dependent Ca2+ signaling.
Liu X, Zhang L, You L, Yu J, Zhao J, Li L Ecotoxicology. 2010; 20(1):177-86.
PMID: 21080220 DOI: 10.1007/s10646-010-0569-x.