Huse S, Acharya S, Shukla S, J H, Sachdev A
Cureus. 2022; 14(8):e28032.
PMID: 36120284
PMC: 9473453.
DOI: 10.7759/cureus.28032.
Rakic M, Vercruyssen S, Van Eyndhoven S, de la Rosa E, Jain S, Van Huffel S
Neuroimage Clin. 2021; 31:102707.
PMID: 34111718
PMC: 8193144.
DOI: 10.1016/j.nicl.2021.102707.
Cassiano M, Lanzillo R, Alfano B, Costabile T, Comerci M, Prinster A
Neuroimage Clin. 2020; 26:102201.
PMID: 32062567
PMC: 7025083.
DOI: 10.1016/j.nicl.2020.102201.
Mu Y, Li Q, Zhang Y
J Med Syst. 2019; 43(9):303.
PMID: 31407120
DOI: 10.1007/s10916-019-1431-1.
Megna R, Alfano B, Lanzillo R, Costabile T, Comerci M, Vacca G
J Neurol. 2018; 266(2):361-368.
PMID: 30498912
DOI: 10.1007/s00415-018-9139-6.
The Multi-Faceted Relationship between White Matter Lesions and Late-Life Depression.
Wu M, Aizenstein H
Am J Geriatr Psychiatry. 2017; 25(12):1322-1325.
PMID: 29050911
PMC: 10833147.
DOI: 10.1016/j.jagp.2017.09.017.
Prediction of Cognitive Decline from White Matter Hyperintensity and Single-Photon Emission Computed Tomography in Alzheimer's Disease.
Tabei K, Kida H, Hosoya T, Satoh M, Tomimoto H
Front Neurol. 2017; 8:408.
PMID: 28928704
PMC: 5591322.
DOI: 10.3389/fneur.2017.00408.
Multimodal MEMPRAGE, FLAIR, and [Formula: see text] Segmentation to Resolve Dura and Vessels from Cortical Gray Matter.
Viviani R, Pracht E, Brenner D, Beschoner P, Stingl J, Stocker T
Front Neurosci. 2017; 11:258.
PMID: 28536501
PMC: 5423271.
DOI: 10.3389/fnins.2017.00258.
Lesion load may predict long-term cognitive dysfunction in multiple sclerosis patients.
Patti F, de Stefano M, Lavorgna L, Messina S, Chisari C, Ippolito D
PLoS One. 2015; 10(3):e0120754.
PMID: 25816303
PMC: 4376682.
DOI: 10.1371/journal.pone.0120754.
OASIS is Automated Statistical Inference for Segmentation, with applications to multiple sclerosis lesion segmentation in MRI.
Sweeney E, Shinohara R, Shiee N, Mateen F, Chudgar A, Cuzzocreo J
Neuroimage Clin. 2013; 2:402-13.
PMID: 24179794
PMC: 3777691.
DOI: 10.1016/j.nicl.2013.03.002.
Improved operator agreement and efficiency using the minimum area contour change method for delineation of hyperintense multiple sclerosis lesions on FLAIR MRI.
Wack D, Dwyer M, Bergsland N, Ramasamy D, Di Perri C, Ranza L
BMC Med Imaging. 2013; 13:29.
PMID: 24004511
PMC: 3766707.
DOI: 10.1186/1471-2342-13-29.
Brain characterization using normalized quantitative magnetic resonance imaging.
Warntjes J, Engstrom M, Tisell A, Lundberg P
PLoS One. 2013; 8(8):e70864.
PMID: 23940653
PMC: 3733841.
DOI: 10.1371/journal.pone.0070864.
Increasing the contrast of the brain MR FLAIR images using fuzzy membership functions and structural similarity indices in order to segment MS lesions.
Bijar A, Khayati R, Penalver Benavent A
PLoS One. 2013; 8(6):e65469.
PMID: 23799015
PMC: 3684600.
DOI: 10.1371/journal.pone.0065469.
Atlas-based neuroinformatics via MRI: harnessing information from past clinical cases and quantitative image analysis for patient care.
Mori S, Oishi K, Faria A, Miller M
Annu Rev Biomed Eng. 2013; 15:71-92.
PMID: 23642246
PMC: 3719383.
DOI: 10.1146/annurev-bioeng-071812-152335.
Automated determination of brain parenchymal fraction in multiple sclerosis.
Vagberg M, Lindqvist T, Ambarki K, Warntjes J, Sundstrom P, Birgander R
AJNR Am J Neuroradiol. 2012; 34(3):498-504.
PMID: 22976234
PMC: 7964911.
DOI: 10.3174/ajnr.A3262.
Current status and future perspectives of magnetic resonance high-field imaging: a summary.
Prabhakaran V, Nair V, Austin B, La C, Gallagher T, Wu Y
Neuroimaging Clin N Am. 2012; 22(2):373-97, xii.
PMID: 22548938
PMC: 3586777.
DOI: 10.1016/j.nic.2012.02.012.
Predictive factors of neutralizing antibodies development in relapsing-remitting multiple sclerosis patients on interferon Beta-1b therapy.
Lanzillo R, Orefice G, Prinster A, Ventrella G, Liuzzi R, Scarano V
Neurol Sci. 2011; 32(2):287-92.
PMID: 21308385
DOI: 10.1007/s10072-011-0483-x.
BDNF Val66Met polymorphism and brain volumes in multiple sclerosis.
Dinacci D, Tessitore A, Russo A, De Bonis M, Lavorgna L, Picconi O
Neurol Sci. 2010; 32(1):117-23.
PMID: 20953813
DOI: 10.1007/s10072-010-0433-z.
Automated segmentation method of white matter and gray matter regions with multiple sclerosis lesions in MR images.
Magome T, Arimura H, Kakeda S, Yamamoto D, Kawata Y, Yamashita Y
Radiol Phys Technol. 2010; 4(1):61-72.
PMID: 20882375
DOI: 10.1007/s12194-010-0106-x.
Computer input devices: neutral party or source of significant error in manual lesion segmentation?.
Chen J, Seagull F, Nagy P, Lakhani P, Melhem E, Siegel E
J Digit Imaging. 2010; 24(1):135-41.
PMID: 20049624
PMC: 3046792.
DOI: 10.1007/s10278-009-9258-9.