» Articles » PMID: 11101221

13C NMR Chemical Shifts Can Predict Disulfide Bond Formation

Overview
Journal J Biomol NMR
Publisher Springer
Date 2000 Dec 2
PMID 11101221
Citations 136
Authors
Affiliations
Soon will be listed here.
Abstract

The presence of disulfide bonds can be detected unambiguously only by X-ray crystallography, and otherwise must be inferred by chemical methods. In this study we demonstrate that 13C NMR chemical shifts are diagnostic of disulfide bond formation, and can discriminate between cysteine in the reduced (free) and oxidized (disulfide bonded) state. A database of cysteine 13C C(alpha) and C(beta) chemical shifts was constructed from the BMRB and Sheffield databases, and published journals. Statistical analysis indicated that the C(beta) shift is extremely sensitive to the redox state, and can predict the disulfide-bonded state. Further, chemical shifts in both states occupy distinct clusters as a function of secondary structure in the C(alpha)/C(beta) chemical shift map. On the basis of these results, we provide simple ground rules for predicting the redox state of cysteines; these rules could be used effectively in NMR structure determination, predicting new folds, and in protein folding studies.

Citing Articles

SANS investigation of fungal loosenins reveals substrate-dependent impacts of protein action on the inter-microfibril arrangement of cellulosic substrates.

Dahiya D, Peter-Szabo Z, Senanayake M, Pingali S, Leite W, Byrnes J Biotechnol Biofuels Bioprod. 2025; 18(1):27.

PMID: 40022179 PMC: 11869483. DOI: 10.1186/s13068-025-02618-5.


Staphylococcal peroxidase inhibitor (SPIN): Investigation of the inhibitory N-terminal domain via a stabilizing disulfide insertion.

Fatehi S, Mishra N, Herdendorf T, Prakash O, Geisbrecht B Arch Biochem Biophys. 2024; 758:110060.

PMID: 38880318 PMC: 11273916. DOI: 10.1016/j.abb.2024.110060.


o-Vanillin binds covalently to MAL/TIRAP Lys-210 but independently inhibits TLR2.

Rahaman M, Thygesen S, Maxwell M, Kim H, Mudai P, Nanson J J Enzyme Inhib Med Chem. 2024; 39(1):2313055.

PMID: 38416868 PMC: 10903754. DOI: 10.1080/14756366.2024.2313055.


Structural Basis of the Immunological Cross-Reactivity between Kiwi and Birch Pollen.

Zeindl R, Franzmann A, Fernandez-Quintero M, Seidler C, Hoerschinger V, Liedl K Foods. 2023; 12(21).

PMID: 37959058 PMC: 10649968. DOI: 10.3390/foods12213939.


Structural and functional analysis of vaccinia viral fusion complex component protein A28 through NMR and molecular dynamic simulations.

Kao C, Tsai M, Carillo K, Tzou D, Chang W PLoS Pathog. 2023; 19(11):e1011500.

PMID: 37948471 PMC: 10664964. DOI: 10.1371/journal.ppat.1011500.


References
1.
Wishart D, Bigam C, Yao J, Abildgaard F, Dyson H, Oldfield E . 1H, 13C and 15N chemical shift referencing in biomolecular NMR. J Biomol NMR. 1995; 6(2):135-40. DOI: 10.1007/BF00211777. View

2.
Srinivasan N, Sowdhamini R, Ramakrishnan C, Balaram P . Conformations of disulfide bridges in proteins. Int J Pept Protein Res. 1990; 36(2):147-55. DOI: 10.1111/j.1399-3011.1990.tb00958.x. View

3.
Iwadate M, Asakura T, Williamson M . C alpha and C beta carbon-13 chemical shifts in proteins from an empirical database. J Biomol NMR. 1999; 13(3):199-211. DOI: 10.1023/a:1008376710086. View

4.
Wishart D, Sykes B . The 13C chemical-shift index: a simple method for the identification of protein secondary structure using 13C chemical-shift data. J Biomol NMR. 1994; 4(2):171-80. DOI: 10.1007/BF00175245. View

5.
Wishart D, Sykes B, Richards F . Relationship between nuclear magnetic resonance chemical shift and protein secondary structure. J Mol Biol. 1991; 222(2):311-33. DOI: 10.1016/0022-2836(91)90214-q. View