Andreacchio G, Longo Y, Moreno Mascaraque S, Anandasothy K, Tofan S, Ozun E
Vaccines (Basel). 2024; 12(8).
PMID: 39204067
PMC: 11360449.
DOI: 10.3390/vaccines12080944.
Rajeeve K, Sivadasan R
Bio Protoc. 2021; 10(3):e3506.
PMID: 33654733
PMC: 7842350.
DOI: 10.21769/BioProtoc.3506.
De Clercq E, Van Gils M, Schautteet K, Devriendt B, Kiekens C, Chiers K
Front Immunol. 2020; 11:555305.
PMID: 33193323
PMC: 7649141.
DOI: 10.3389/fimmu.2020.555305.
Zhou Z, Liu N, Wang Y, Emmanuel A, You X, Liu J
Pathog Dis. 2019; 77(3).
PMID: 31197357
PMC: 7962888.
DOI: 10.1093/femspd/ftz017.
Pais R, Omosun Y, He Q, Blas-Machado U, Black C, Igietseme J
PLoS One. 2017; 12(6):e0178537.
PMID: 28570663
PMC: 5453548.
DOI: 10.1371/journal.pone.0178537.
Genomic variant representation in a Chlamydia population is dynamic and adaptive with dependence on in vitro and in vivo passage.
Jasper D, Sigar I, Schripsema J, Sainvil C, Smith C, Yeruva L
Pathog Dis. 2015; 73(1):1-12.
PMID: 25673672
PMC: 4399565.
DOI: 10.1093/femspd/ftv003.
Animal models for studying female genital tract infection with Chlamydia trachomatis.
De Clercq E, Kalmar I, Vanrompay D
Infect Immun. 2013; 81(9):3060-7.
PMID: 23836817
PMC: 3754237.
DOI: 10.1128/IAI.00357-13.
Vaccination with the recombinant major outer membrane protein elicits antibodies to the constant domains and induces cross-serovar protection against intranasal challenge with Chlamydia trachomatis.
Tifrea D, Ralli-Jain P, Pal S, de la Maza L
Infect Immun. 2013; 81(5):1741-50.
PMID: 23478318
PMC: 3648024.
DOI: 10.1128/IAI.00734-12.
Differences in infectivity and induction of infertility: a comparative study of Chlamydia trachomatis strains in the murine model.
Carmichael J, Tifrea D, Pal S, de la Maza L
Microbes Infect. 2013; 15(3):219-29.
PMID: 23287699
PMC: 3602122.
DOI: 10.1016/j.micinf.2012.12.001.
Murine Chlamydia trachomatis genital infection is unaltered by depletion of CD4+ T cells and diminished adaptive immunity.
Morrison S, Farris C, Sturdevant G, Whitmire W, Morrison R
J Infect Dis. 2011; 203(8):1120-8.
PMID: 21321103
PMC: 3068022.
DOI: 10.1093/infdis/jiq176.
Vaccination against Chlamydia genital infection utilizing the murine C. muridarum model.
Farris C, Morrison R
Infect Immun. 2010; 79(3):986-96.
PMID: 21078844
PMC: 3067520.
DOI: 10.1128/IAI.00881-10.
Specific-pathogen-free pigs as an animal model for studying Chlamydia trachomatis genital infection.
Vanrompay D, Hoang T, De Vos L, Verminnen K, Harkinezhad T, Chiers K
Infect Immun. 2005; 73(12):8317-21.
PMID: 16299329
PMC: 1307099.
DOI: 10.1128/IAI.73.12.8317-8321.2005.
Acquired homotypic and heterotypic immunity against oculogenital Chlamydia trachomatis serovars following female genital tract infection in mice.
Lyons J, Morre S, Airo-Brown L, Pena A, Ito J
BMC Infect Dis. 2005; 5:105.
PMID: 16293190
PMC: 1318460.
DOI: 10.1186/1471-2334-5-105.
Differences in growth characteristics and elementary body associated cytotoxicity between Chlamydia trachomatis oculogenital serovars D and H and Chlamydia muridarum.
Lyons J, Ito Jr J, Pena A, Morre S
J Clin Pathol. 2005; 58(4):397-401.
PMID: 15790704
PMC: 1770636.
DOI: 10.1136/jcp.2004.021543.
Chlamydia trachomatis persistence in the female mouse genital tract: inducible nitric oxide synthase and infection outcome.
Ramsey K, Miranpuri G, Sigar I, Ouellette S, Byrne G
Infect Immun. 2001; 69(8):5131-7.
PMID: 11447195
PMC: 98609.
DOI: 10.1128/IAI.69.8.5131-5137.2001.