» Articles » PMID: 1107323

H2-dependent Anaerobic Growth of Escherichia Coli on L-malate: Succinate Formation

Overview
Journal J Bacteriol
Specialty Microbiology
Date 1976 Feb 1
PMID 1107323
Citations 33
Authors
Affiliations
Soon will be listed here.
Abstract

Escherichia coli grew anaerobically on L-malate only in the presence of H2; 91% of the L-malate utilized was converted to succinate. Anaerobically isolated membrane vesicles catalyzed the reduction of fumarate with H2 and contained a b-type cytochrome. Cytochrome c552 was present in the "periplasmic space."

Citing Articles

Key roles of two-component systems in intestinal signal sensing and virulence regulation in enterohemorrhagic Escherichia coli.

Sun H, Huang D, Pang Y, Chen J, Kang C, Zhao M FEMS Microbiol Rev. 2024; 48(6).

PMID: 39537200 PMC: 11644481. DOI: 10.1093/femsre/fuae028.


Enterohaemorrhagic E. coli utilizes host- and microbiota-derived L-malate as a signaling molecule for intestinal colonization.

Liu B, Jiang L, Liu Y, Sun H, Yan J, Kang C Nat Commun. 2023; 14(1):7227.

PMID: 37945607 PMC: 10636207. DOI: 10.1038/s41467-023-43149-7.


Conversion of into Mixotrophic CO Assimilation with Malate and Hydrogen Based on Recombinant Expression of 2-Oxoglutarate:Ferredoxin Oxidoreductase Using Adaptive Laboratory Evolution.

Cheng Y, Huang W, Lo S, Huang E, Chiang E, Huang C Microorganisms. 2023; 11(2).

PMID: 36838218 PMC: 9967407. DOI: 10.3390/microorganisms11020253.


C-Dicarboxylates as Growth Substrates and Signaling Molecules for Commensal and Pathogenic Enteric Bacteria in Mammalian Intestine.

Schubert C, Unden G J Bacteriol. 2022; 204(4):e0054521.

PMID: 34978458 PMC: 9017328. DOI: 10.1128/JB.00545-21.


C4-Dicarboxylate Utilization in Aerobic and Anaerobic Growth.

Unden G, Strecker A, Kleefeld A, Kim O EcoSal Plus. 2016; 7(1).

PMID: 27415771 PMC: 11575717. DOI: 10.1128/ecosalplus.ESP-0021-2015.


References
1.
Peck Jr H, SMITH O, Gest H . Comparative biochemistry of the biological reduction of fumaric acid. Biochim Biophys Acta. 1957; 25(1):142-7. DOI: 10.1016/0006-3002(57)90431-6. View

2.
Wolin M, WOLIN E, Jacobs N . Cytochrome-producing anaerobic Vibrio succinogenes, sp. n. J Bacteriol. 1961; 81:911-7. PMC: 314759. DOI: 10.1128/jb.81.6.911-917.1961. View

3.
Der Vartanian D, LeGall J . A monomolecular electron transfer chain: structure and function of cytochrome C3. Biochim Biophys Acta. 1974; 346(1):79-99. DOI: 10.1016/0304-4173(74)90012-3. View

4.
Konings W, Kaback H . Anaerobic transport in Escherichia coli membrane vesicles. Proc Natl Acad Sci U S A. 1973; 70(12):3376-81. PMC: 427240. DOI: 10.1073/pnas.70.12.3376. View

5.
Spencer M, Guest J . Isolation and properties of fumarate reductase mutants of Escherichia coli. J Bacteriol. 1973; 114(2):563-70. PMC: 251810. DOI: 10.1128/jb.114.2.563-570.1973. View