» Articles » PMID: 11054459

Domain Exchange: Chimeras of Thermus Aquaticus DNA Polymerase, Escherichia Coli DNA Polymerase I and Thermotoga Neapolitana DNA Polymerase

Overview
Journal Protein Eng
Date 2000 Oct 31
PMID 11054459
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

The intervening domain of the thermostable Thermus aquaticus DNA polymerase (TAQ: polymerase), which has no catalytic activity, has been exchanged for the 3'-5' exonuclease domain of the homologous mesophile Escherichia coli DNA polymerase I (E.coli pol I) and the homologous thermostable Thermotoga neapolitana DNA polymerase (TNE: polymerase). Three chimeric DNA polymerases have been constructed using the three-dimensional (3D) structure of the Klenow fragment of the E.coli pol I and 3D models of the intervening and polymerase domains of the TAQ: polymerase and the TNE: polymerase: chimera TaqEc1 (exchange of residues 292-423 from TAQ: polymerase for residues 327-519 of E.coli pol I), chimera TaqTne1 (exchange of residues 292-423 of TAQ: polymerase for residues 295-485 of TNE: polymerase) and chimera TaqTne2 (exchange of residues 292-448 of TAQ: polymerase for residues 295-510 of TNE: polymerase). The chimera TaqEc1 showed characteristics from both parental polymerases at an intermediate temperature of 50 degrees C: high polymerase activity, processivity, 3'-5' exonuclease activity and proof-reading function. In comparison, the chimeras TaqTne1 and TaqTne2 showed no significant 3'-5' exonuclease activity and no proof-reading function. The chimera TaqTne1 showed an optimum temperature at 60 degrees C, decreased polymerase activity compared with the TAQ: polymerase and reduced processivity. The chimera TaqTne2 showed high polymerase activity at 72 degrees C, processivity and less reduced thermostability compared with the chimera TaqTne1.

Citing Articles

A robust strategy for overexpression of DNA polymerase from Thermus aquaticus using an IPTG-independent autoinduction system in a benchtop bioreactor.

Laksmi F, Lischer K, Nugraha Y, Violando W, Helbert , Nuryana I Sci Rep. 2025; 15(1):5891.

PMID: 39966433 PMC: 11836315. DOI: 10.1038/s41598-025-89902-4.


Strategies and procedures to generate chimeric DNA polymerases for improved applications.

Yu Z, Wang J Appl Microbiol Biotechnol. 2024; 108(1):445.

PMID: 39167106 PMC: 11339088. DOI: 10.1007/s00253-024-13276-2.


DNA Polymerases for Whole Genome Amplification: Considerations and Future Directions.

Ordonez C, Redrejo-Rodriguez M Int J Mol Sci. 2023; 24(11).

PMID: 37298280 PMC: 10253169. DOI: 10.3390/ijms24119331.


Engineering Polymerases for New Functions.

Coulther T, Stern H, Beuning P Trends Biotechnol. 2019; 37(10):1091-1103.

PMID: 31003719 PMC: 6745271. DOI: 10.1016/j.tibtech.2019.03.011.


Long-Range PCR Amplification of DNA by DNA Polymerase III Holoenzyme from Thermus thermophilus.

Ribble W, Kane S, Bullard J Enzyme Res. 2015; 2015:837842.

PMID: 25688300 PMC: 4320859. DOI: 10.1155/2015/837842.