Tugarinov V, Clore G
Prog Nucl Magn Reson Spectrosc. 2024; 144-145:40-62.
PMID: 39645350
PMC: 11625180.
DOI: 10.1016/j.pnmrs.2024.05.004.
Tugarinov V, Torricella F, Ying J, Clore G
J Biomol NMR. 2024; 78(4):199-213.
PMID: 39083133
PMC: 11614955.
DOI: 10.1007/s10858-024-00445-8.
Kamenik A, Singh I, Lak P, Balius T, Liedl K, Shoichet B
Proc Natl Acad Sci U S A. 2021; 118(36).
PMID: 34475217
PMC: 8433570.
DOI: 10.1073/pnas.2106195118.
Tesei G, Martins J, Kunze M, Wang Y, Crehuet R, Lindorff-Larsen K
PLoS Comput Biol. 2021; 17(1):e1008551.
PMID: 33481784
PMC: 7857587.
DOI: 10.1371/journal.pcbi.1008551.
Jayapaul J, Schroder L
Molecules. 2020; 25(20).
PMID: 33050669
PMC: 7587211.
DOI: 10.3390/molecules25204627.
Exchange saturation transfer and associated NMR techniques for studies of protein interactions involving high-molecular-weight systems.
Tugarinov V, Clore G
J Biomol NMR. 2019; 73(8-9):461-469.
PMID: 31407202
PMC: 6819251.
DOI: 10.1007/s10858-019-00244-6.
On identifying collective displacements in apo-proteins that reveal eventual binding pathways.
Dube D, Ahalawat N, Khandelia H, Mondal J, Sengupta S
PLoS Comput Biol. 2019; 15(1):e1006665.
PMID: 30645590
PMC: 6333327.
DOI: 10.1371/journal.pcbi.1006665.
Mechanisms for Benzene Dissociation through the Excited State of T4 Lysozyme L99A Mutant.
Feher V, Schiffer J, Mermelstein D, Mih N, Pierce L, McCammon J
Biophys J. 2019; 116(2):205-214.
PMID: 30606449
PMC: 6349996.
DOI: 10.1016/j.bpj.2018.09.035.
Arginine Side-Chain Hydrogen Exchange: Quantifying Arginine Side-Chain Interactions in Solution.
Mackenzie H, Hansen D
Chemphyschem. 2018; 20(2):252-259.
PMID: 30085401
PMC: 6391956.
DOI: 10.1002/cphc.201800598.
Atomic resolution mechanism of ligand binding to a solvent inaccessible cavity in T4 lysozyme.
Mondal J, Ahalawat N, Pandit S, Kay L, Vallurupalli P
PLoS Comput Biol. 2018; 14(5):e1006180.
PMID: 29775455
PMC: 5979041.
DOI: 10.1371/journal.pcbi.1006180.
Biomolecular conformational changes and ligand binding: from kinetics to thermodynamics.
Wang Y, Martins J, Lindorff-Larsen K
Chem Sci. 2018; 8(9):6466-6473.
PMID: 29619200
PMC: 5859887.
DOI: 10.1039/c7sc01627a.
Escape of a Small Molecule from Inside T4 Lysozyme by Multiple Pathways.
Nunes-Alves A, Zuckerman D, Arantes G
Biophys J. 2018; 114(5):1058-1066.
PMID: 29539393
PMC: 5883560.
DOI: 10.1016/j.bpj.2018.01.014.
Nuclear magnetic resonance-based determination of dioxygen binding sites in protein cavities.
Kitahara R, Sakuraba S, Kameda T, Okuda S, Xue M, Mulder F
Protein Sci. 2017; 27(3):769-779.
PMID: 29271012
PMC: 5818741.
DOI: 10.1002/pro.3371.
Capturing Invisible Motions in the Transition from Ground to Rare Excited States of T4 Lysozyme L99A.
Schiffer J, Feher V, Malmstrom R, Sida R, Amaro R
Biophys J. 2016; 111(8):1631-1640.
PMID: 27760351
PMC: 5071553.
DOI: 10.1016/j.bpj.2016.08.041.
Mapping transiently formed and sparsely populated conformations on a complex energy landscape.
Wang Y, Papaleo E, Lindorff-Larsen K
Elife. 2016; 5.
PMID: 27552057
PMC: 5050026.
DOI: 10.7554/eLife.17505.
Detecting O2 binding sites in protein cavities.
Kitahara R, Yoshimura Y, Xue M, Kameda T, Mulder F
Sci Rep. 2016; 6:20534.
PMID: 26830762
PMC: 4735865.
DOI: 10.1038/srep20534.
Proton detection for signal enhancement in solid-state NMR experiments on mobile species in membrane proteins.
Ward M, Ritz E, Ahmed M, Bamm V, Harauz G, Brown L
J Biomol NMR. 2015; 63(4):375-388.
PMID: 26494649
DOI: 10.1007/s10858-015-9997-5.
Structure-relaxation mechanism for the response of T4 lysozyme cavity mutants to hydrostatic pressure.
Lerch M, Lopez C, Yang Z, Kreitman M, Horwitz J, Hubbell W
Proc Natl Acad Sci U S A. 2015; 112(19):E2437-46.
PMID: 25918400
PMC: 4434698.
DOI: 10.1073/pnas.1506505112.
Cavity as a source of conformational fluctuation and high-energy state: high-pressure NMR study of a cavity-enlarged mutant of T4 lysozyme.
Maeno A, Sindhikara D, Hirata F, Otten R, Dahlquist F, Yokoyama S
Biophys J. 2015; 108(1):133-45.
PMID: 25564860
PMC: 4286597.
DOI: 10.1016/j.bpj.2014.11.012.
NMR studies of the dynamics of high-spin nitrophorins: comparative studies of NP4 and NP2 at close to physiological pH.
Berry R, Muthu D, Yang F, Walker F
Biochemistry. 2014; 54(2):221-39.
PMID: 25486224
PMC: 4303294.
DOI: 10.1021/bi501305a.