» Articles » PMID: 11006149

Immediate and Delayed Effects of Heat Stress on Follicular Development and Its Association with Plasma FSH and Inhibin Concentration in Cows

Overview
Journal J Reprod Fertil
Date 2000 Sep 28
PMID 11006149
Citations 54
Authors
Affiliations
Soon will be listed here.
Abstract

The aim of this study was to characterize the immediate effects of heat stress on plasma FSH and inhibin concentrations, and its involvement in follicular dynamics during a complete oestrous cycle, and to examine a possible delayed effect of heat stress on follicular development. Holstein dairy cows were oestrous synchronized and randomly assigned to either cooled (n = 7) or heat-stressed (n = 6) treatment groups. During a complete oestrous cycle, control cows, which were cooled, maintained normothermia, whereas heat-stressed cows, which were exposed to direct solar radiation, developed hyperthermia. At the end of this oestrous cycle (treated cycle), both groups were cooled and maintained normothermia for the first 10 days of the subsequent oestrous cycle. Throughout this period, follicular development was examined by ultrasonography, and plasma samples were collected. During the second follicular wave of the treated oestrous cycle, a significantly larger cohort of medium sized follicles (6-9 mm) was found in heat-stressed cows than in cooled cows (P < 0.05). The enhanced growth of follicles in this wave in heat-stressed cows was associated with a higher plasma FSH increase which lasted 4 more days (days 8-13 of the oestrous cycle; P < 0.05), and coincided with a decrease in the plasma concentration of immunoreactive inhibin (days 5-18 of the oestrous cycle; P < 0.05). During the follicular phase (days 17-20 of the treated cycle), heat-stressed cows showed an increase in the number of large follicles (>/= 10 mm), and the preovulatory plasma FSH surge was significantly higher in heat-stressed cows than in cooled cows (P < 0.01). The effect of heat stress was also observed during the first follicular wave of the subsequent cycle: the postovulatory plasma FSH concentration was higher (P < 0.01), but fewer medium follicles developed, and the first follicular wave decreased at a slower rate in previously heat-stressed cows than in cooled cows (0.40 and 0.71 follicles per day, respectively). This study shows both immediate and delayed effects of heat stress on follicular dynamics, which were associated with high FSH and low inhibin concentrations in plasma. These alterations may have physiological significance that could be associated with low fertility of cattle during the summer and autumn.

Citing Articles

The Effects of Heat Stress on the Ovary, Follicles and Oocytes: A Systematic Review.

Zhou L, Gokyer D, Madkins K, Beestrum M, Horton D, Duncan F bioRxiv. 2024; .

PMID: 39677695 PMC: 11643117. DOI: 10.1101/2024.12.04.626831.


Investigating genotype by environment interaction for beef cattle fertility traits in commercial herds in northern Australia with multi-trait analysis.

Copley J, Hayes B, Ross E, Speight S, Fordyce G, Wood B Genet Sel Evol. 2024; 56(1):70.

PMID: 39482597 PMC: 11526658. DOI: 10.1186/s12711-024-00936-0.


Advances in the Effects of Heat Stress on Ovarian Granulosa Cells: Unveiling Novel Ferroptosis Pathways.

Zhu Z, Wu J, Wen Y, Wu X, Bao H, Wang M Vet Sci. 2024; 11(10).

PMID: 39453056 PMC: 11511475. DOI: 10.3390/vetsci11100464.


Impact of Heat Stress on Oocyte Developmental Competence and Pre-Implantation Embryo Viability in Cattle.

Gomez-Guzman J, Parra-Bracamonte G, Velazquez M Animals (Basel). 2024; 14(15).

PMID: 39123806 PMC: 11311040. DOI: 10.3390/ani14152280.


Effect of Heat Stress on Subsequent Estrous Cycles Induced by PGF2α in Cross-Bred Holstein Dairy Cows.

Thammahakin P, Yawongsa A, Rukkwamsuk T Animals (Basel). 2024; 14(13).

PMID: 38998120 PMC: 11240832. DOI: 10.3390/ani14132009.