Chandrashekar P, Chen H, Lee M, Ahmadinejad N, Liu L
Comput Struct Biotechnol J. 2024; 23:679-687.
PMID: 38292477
PMC: 10825326.
DOI: 10.1016/j.csbj.2023.12.044.
Uygun S, Seddon A, Azodi C, Shiu S
Plant Physiol. 2017; 174(1):450-464.
PMID: 28373393
PMC: 5411138.
DOI: 10.1104/pp.16.01828.
Sikdar S, Datta S
BMC Bioinformatics. 2017; 18(1):79.
PMID: 28148240
PMC: 5288875.
DOI: 10.1186/s12859-017-1499-x.
Lis M, Walther D
BMC Genomics. 2016; 17:185.
PMID: 26939991
PMC: 4778318.
DOI: 10.1186/s12864-016-2549-x.
Maynou J, Pairo E, Marco S, Perera A
BMC Bioinformatics. 2015; 16:377.
PMID: 26553056
PMC: 4640167.
DOI: 10.1186/s12859-015-0811-x.
Binding site discovery from nucleic acid sequences by discriminative learning of hidden Markov models.
Maaskola J, Rajewsky N
Nucleic Acids Res. 2014; 42(21):12995-3011.
PMID: 25389269
PMC: 4245949.
DOI: 10.1093/nar/gku1083.
Genomewide bioinformatic analysis negates any specific role for Dof, GATA and Ag/cTCA motifs in nitrate responsive gene expression in Arabidopsis.
Pathak R, Das S, Choudhury D, Raghuram N
Physiol Mol Biol Plants. 2013; 15(2):145-50.
PMID: 23572923
PMC: 3550365.
DOI: 10.1007/s12298-009-0016-8.
A hybrid method for the exact planted (l, d) motif finding problem and its parallelization.
Abbas M, Abouelhoda M, Bahig H
BMC Bioinformatics. 2013; 13 Suppl 17:S10.
PMID: 23281969
PMC: 3521218.
DOI: 10.1186/1471-2105-13-S17-S10.
qPMS7: a fast algorithm for finding (ℓ, d)-motifs in DNA and protein sequences.
Dinh H, Rajasekaran S, Davila J
PLoS One. 2012; 7(7):e41425.
PMID: 22848493
PMC: 3404135.
DOI: 10.1371/journal.pone.0041425.
Towards a theoretical understanding of false positives in DNA motif finding.
Zia A, Moses A
BMC Bioinformatics. 2012; 13:151.
PMID: 22738169
PMC: 3436861.
DOI: 10.1186/1471-2105-13-151.
PMS5: an efficient exact algorithm for the (ℓ, d)-motif finding problem.
Dinh H, Rajasekaran S, Kundeti V
BMC Bioinformatics. 2011; 12:410.
PMID: 22024209
PMC: 3269969.
DOI: 10.1186/1471-2105-12-410.
A speedup technique for (l, d)-motif finding algorithms.
Rajasekaran S, Dinh H
BMC Res Notes. 2011; 4:54.
PMID: 21385438
PMC: 3063805.
DOI: 10.1186/1756-0500-4-54.
WordSeeker: concurrent bioinformatics software for discovering genome-wide patterns and word-based genomic signatures.
Lichtenberg J, Kurz K, Liang X, Al-Ouran R, Neiman L, Nau L
BMC Bioinformatics. 2011; 11 Suppl 12:S6.
PMID: 21210985
PMC: 3040532.
DOI: 10.1186/1471-2105-11-S12-S6.
Motif-blind, genome-wide discovery of cis-regulatory modules in Drosophila and mouse.
Kantorovitz M, Kazemian M, Kinston S, Miranda-Saavedra D, Zhu Q, Robinson G
Dev Cell. 2009; 17(4):568-79.
PMID: 19853570
PMC: 2768654.
DOI: 10.1016/j.devcel.2009.09.002.
PIDA:A new algorithm for pattern identification.
Putonti C, Pettitt B, Reid J, Fofanov Y
Online J Bioinform. 2009; 8(1):30-40.
PMID: 19834570
PMC: 2761635.
Identifying regulatory elements in eukaryotic genomes.
Narlikar L, Ovcharenko I
Brief Funct Genomic Proteomic. 2009; 8(4):215-30.
PMID: 19498043
PMC: 2764519.
DOI: 10.1093/bfgp/elp014.
The identification of functional motifs in temporal gene expression analysis.
Song J, Bjarnason J, Surette M
Evol Bioinform Online. 2009; 1:84-96.
PMID: 19325856
PMC: 2658870.
A feature-based approach to modeling protein-DNA interactions.
Sharon E, Lubliner S, Segal E
PLoS Comput Biol. 2008; 4(8):e1000154.
PMID: 18725950
PMC: 2516605.
DOI: 10.1371/journal.pcbi.1000154.
Recent computational approaches to understand gene regulation: mining gene regulation in silico.
Abnizova I, Subhankulova T, Gilks W
Curr Genomics. 2008; 8(2):79-91.
PMID: 18660846
PMC: 2435357.
DOI: 10.2174/138920207780368150.
Discovering gapped binding sites of yeast transcription factors.
Chen C, Tsai H, Hsu C, Chen M, Hung H, Huang G
Proc Natl Acad Sci U S A. 2008; 105(7):2527-32.
PMID: 18272477
PMC: 2268170.
DOI: 10.1073/pnas.0712188105.