Ma C, Jin Y, Lauwereyns J
Cogn Neurodyn. 2024; 18(6):3691-3714.
PMID: 39712095
PMC: 11655739.
DOI: 10.1007/s11571-024-10151-8.
Pah N, Ngo Q, McConnell N, Polus B, Kempster P, Bhattacharya A
Front Med Technol. 2024; 6:1477502.
PMID: 39654658
PMC: 11625542.
DOI: 10.3389/fmedt.2024.1477502.
Hoffmann A, Crevecoeur F
eNeuro. 2024; 11(12).
PMID: 39542732
PMC: 11628215.
DOI: 10.1523/ENEURO.0262-24.2024.
Xie T, Adamek M, Cho H, Adamo M, Ritaccio A, Willie J
Nat Commun. 2024; 15(1):4308.
PMID: 38773117
PMC: 11109249.
DOI: 10.1038/s41467-024-48342-w.
Geuzebroek A, Craddock H, OConnell R, Kelly S
Elife. 2023; 12.
PMID: 37646405
PMC: 10547474.
DOI: 10.7554/eLife.83025.
Controlling the trajectory of a moving object substantially shortens the latency of motor responses to visual stimuli.
Le Naour T, Papinutto M, Lobier M, Bresciani J
iScience. 2023; 26(6):106838.
PMID: 37250785
PMC: 10212987.
DOI: 10.1016/j.isci.2023.106838.
Sensorimotor feedback loops are selectively sensitive to reward.
Codol O, Kashefi M, Forgaard C, Galea J, Pruszynski J, Gribble P
Elife. 2023; 12.
PMID: 36637162
PMC: 9910828.
DOI: 10.7554/eLife.81325.
Post-saccadic Eye Movement Indices Under Cognitive Load: A Path Analysis to Determine Visual Performance.
Salehi Fadardi M, Fadardi J, Mahjoob M, Doosti H
J Ophthalmic Vis Res. 2022; 17(3):397-404.
PMID: 36160105
PMC: 9493421.
DOI: 10.18502/jovr.v17i3.11578.
Attaining the recesses of the cognitive space.
Papo D
Cogn Neurodyn. 2022; 16(4):767-778.
PMID: 35847536
PMC: 9279523.
DOI: 10.1007/s11571-021-09755-1.
Hasty sensorimotor decisions rely on an overlap of broad and selective changes in motor activity.
Derosiere G, Thura D, Cisek P, Duque J
PLoS Biol. 2022; 20(4):e3001598.
PMID: 35389982
PMC: 9017893.
DOI: 10.1371/journal.pbio.3001598.
Proactive and reactive accumulation-to-bound processes compete during perceptual decisions.
Hernandez-Navarro L, Hermoso-Mendizabal A, Duque D, de la Rocha J, Hyafil A
Nat Commun. 2021; 12(1):7148.
PMID: 34880219
PMC: 8655090.
DOI: 10.1038/s41467-021-27302-8.
Setting the space for deliberation in decision-making.
Vargas D, Lauwereyns J
Cogn Neurodyn. 2021; 15(5):743-755.
PMID: 34603540
PMC: 8448799.
DOI: 10.1007/s11571-021-09681-2.
Neural mechanisms underlying the temporal control of sequential saccade planning in the frontal eye field.
Basu D, Sendhilnathan N, Murthy A
Proc Natl Acad Sci U S A. 2021; 118(40).
PMID: 34599104
PMC: 8501878.
DOI: 10.1073/pnas.2108922118.
Vision as oculomotor reward: cognitive contributions to the dynamic control of saccadic eye movements.
Wolf C, Lappe M
Cogn Neurodyn. 2021; 15(4):547-568.
PMID: 34367360
PMC: 8286912.
DOI: 10.1007/s11571-020-09661-y.
Sex-specific speed-accuracy trade-offs shape neural processing of acoustic signals in a grasshopper.
Clemens J, Ronacher B, Reichert M
Proc Biol Sci. 2021; 288(1945):20210005.
PMID: 33593184
PMC: 7935134.
DOI: 10.1098/rspb.2021.0005.
A new model of decision processing in instrumental learning tasks.
Miletic S, Boag R, Trutti A, Stevenson N, Forstmann B, Heathcote A
Elife. 2021; 10.
PMID: 33501916
PMC: 7880686.
DOI: 10.7554/eLife.63055.
Modeling the effects of perisaccadic attention on gaze statistics during scene viewing.
Schwetlick L, Rothkegel L, Trukenbrod H, Engbert R
Commun Biol. 2020; 3(1):727.
PMID: 33262536
PMC: 7708631.
DOI: 10.1038/s42003-020-01429-8.
Perception of saccadic reaction time.
Vencato V, Madelain L
Sci Rep. 2020; 10(1):17192.
PMID: 33057041
PMC: 7560701.
DOI: 10.1038/s41598-020-72659-3.
Confluence of Timing and Reward Biases in Perceptual Decision-Making Dynamics.
Shinn M, Ehrlich D, Lee D, Murray J, Seo H
J Neurosci. 2020; 40(38):7326-7342.
PMID: 32839233
PMC: 7534922.
DOI: 10.1523/JNEUROSCI.0544-20.2020.
Urgency Promotes Affective Disengagement: Effects From Bivalent Cues on Preference Formation for Abstract Images.
Xu J, Zommara N, Ounjai K, Takahashi M, Kobayashi S, Matsuda T
Front Psychol. 2020; 11:1404.
PMID: 32655459
PMC: 7325338.
DOI: 10.3389/fpsyg.2020.01404.