Direct Measurement of Specific Membrane Capacitance in Neurons
Overview
Authors
Affiliations
The specific membrane capacitance (C(m)) of a neuron influences synaptic efficacy and determines the speed with which electrical signals propagate along dendrites and unmyelinated axons. The value of this important parameter remains controversial. In this study, C(m) was estimated for the somatic membrane of cortical pyramidal neurons, spinal cord neurons, and hippocampal neurons. A nucleated patch was pulled and a voltage-clamp step was applied. The exponential decay of the capacitative charging current was analyzed to give the total membrane capacitance, which was then divided by the observed surface area of the patch. C(m) was 0.9 microF/cm(2) for each class of neuron. To test the possibility that membrane proteins may alter C(m), embryonic kidney cells (HEK-293) were studied before and after transfection with a plasmid coding for glycine receptor/channels. The value of C(m) was indistinguishable in untransfected cells and in transfected cells expressing a high level of glycine channels, indicating that differences in transmembrane protein content do not significantly affect C(m). Thus, to a first approximation, C(m) may be treated as a "biological constant" across many classes of neuron.
Electrophysiological Characterization of Monoolein-Fatty Acid Bilayers.
Scott C, Porteus R, Takeuchi S, Osaki T, Lee S Langmuir. 2025; 41(4):2293-2299.
PMID: 39865883 PMC: 11803713. DOI: 10.1021/acs.langmuir.4c03814.
Higher-order transient structures and the principle of dynamic connectivity in membrane signaling.
Zhang Y, MacKinnon R Proc Natl Acad Sci U S A. 2024; 122(1):e2421280121.
PMID: 39739805 PMC: 11725812. DOI: 10.1073/pnas.2421280121.
Baeza-Loya S, Eatock R Front Neurol. 2024; 15:1471118.
PMID: 39624672 PMC: 11608953. DOI: 10.3389/fneur.2024.1471118.
Daily oscillations of neuronal membrane capacitance.
Severin D, Moreno C, Tran T, Wesselborg C, Shirley S, Contreras A Cell Rep. 2024; 43(10):114744.
PMID: 39298314 PMC: 11744780. DOI: 10.1016/j.celrep.2024.114744.
Oxidative Phosphorylation Does Not Violate the Second Law of Thermodynamics.
Silverstein T J Phys Chem B. 2024; 128(35):8448-8458.
PMID: 39167050 PMC: 11382260. DOI: 10.1021/acs.jpcb.4c03047.