» Articles » PMID: 10854033

Ultrastructural Analysis of Neurosecretory Cells in the Antennae of the Mosquito, Culex Salinarius (Diptera: Culicidae)

Overview
Journal J Mol Neurosci
Date 2000 Jun 15
PMID 10854033
Citations 4
Authors
Affiliations
Soon will be listed here.
Abstract

An antiserum raised against the peptide, culetachykinin II, immunocytochemically detected a group of neurosecretory cells in the first flagellar segment of the antennae of both males and females of the mosquito, Culex salinarius. This is the first insect species in which neurosecretory cells have been found in the antennae. The ultrastructure of these antennal neurosecretory cells (ANC) is described, as well as their relationship to other neurons in the antennae and antennal lobe of the mosquito. These tachykinin-reactive cells contain relatively small (140-220 nm) elementary neurosecretory granules. Not only do the ANC have axons that terminate on specific glomeruli of the deutocerebrum, but these neurons also have collaterals that form neurohemal terminals in the receptor lymph channels of the dendrites of the sensory neurons. Thus, the ANC not only influence higher centers of the brain that interpret signals from the antennal sensillae, but also modulate the response of the sensory receptors. To our knowledge, this is the first report of neurosecretory cells directly affecting the signal reception of sensory neurons.

Citing Articles

Transcriptomics supports local sensory regulation in the antenna of the kissing-bug Rhodnius prolixus.

Latorre-Estivalis J, Sterkel M, Ons S, Lorenzo M BMC Genomics. 2020; 21(1):101.

PMID: 32000664 PMC: 6993403. DOI: 10.1186/s12864-020-6514-3.


Neuropeptides in the antennal lobe of the yellow fever mosquito, Aedes aegypti.

Siju K, Reifenrath A, Scheiblich H, Neupert S, Predel R, Hansson B J Comp Neurol. 2013; 522(3):592-608.

PMID: 23897410 PMC: 4265797. DOI: 10.1002/cne.23434.


Transcriptome profiling of chemosensory appendages in the malaria vector Anopheles gambiae reveals tissue- and sex-specific signatures of odor coding.

Pitts R, Rinker D, Jones P, Rokas A, Zwiebel L BMC Genomics. 2011; 12:271.

PMID: 21619637 PMC: 3126782. DOI: 10.1186/1471-2164-12-271.


Neuroendocrine modulation of olfactory sensory neuron signal reception via axo-dendritic synapses in the antennae of the mosquito, Aedes aegypti.

Meola S, Sittertz-Bhatkar H J Mol Neurosci. 2002; 18(3):239-45.

PMID: 12059042 DOI: 10.1385/JMN:18:3:239.

References
1.
Bowen M . The sensory physiology of host-seeking behavior in mosquitoes. Annu Rev Entomol. 1991; 36:139-58. DOI: 10.1146/annurev.en.36.010191.001035. View

2.
Mollenhauer H . PLASTIC EMBEDDING MIXTURES FOR USE IN ELECTRON MICROSCOPY. Stain Technol. 1964; 39:111-4. View

3.
Axel R . The molecular logic of smell. Sci Am. 1995; 273(4):154-9. DOI: 10.1038/scientificamerican1095-154. View

4.
Nassel D . Tachykinin-related peptides in invertebrates: a review. Peptides. 1999; 20(1):141-58. DOI: 10.1016/s0196-9781(98)00142-9. View

5.
Lundquist C, Clottens F, Holman G, Riehm J, Bonkale W, Nassel D . Locustatachykinin immunoreactivity in the blowfly central nervous system and intestine. J Comp Neurol. 1994; 341(2):225-40. DOI: 10.1002/cne.903410208. View