» Articles » PMID: 1082506

A Non-linear Voltage Dependent Charge Movement in Frog Skeletal Muscle

Overview
Journal J Physiol
Specialty Physiology
Date 1976 Jan 1
PMID 1082506
Citations 106
Authors
Affiliations
Soon will be listed here.
Abstract

1. Voltage-clamp experiments were carried out using the three microelectrode technique. Using this method membrane current density at V1 is proportional to deltaV( = V2 - V1) where V1 and V2 are voltages at distances 1 and 21 from the end of a fibre. Voltage dependent sodium currents were blocked by tetrodotoxin, potassium by tetraethylammonium ions and rubidium. Contraction was blocked by adding sucrose, 467 mM. 2. The current deltaV (control) associated with a positive voltage step from a hyperpolarized conditioning voltage to the holding potential, -80 mV, showed two components, a capacitative transient which decayed rapidly and a maintained steady level...

Citing Articles

Biophysical reviews top five: voltage-dependent charge movement in nerve and muscle.

Dulhunty A Biophys Rev. 2024; 15(6):1903-1907.

PMID: 38192339 PMC: 10771356. DOI: 10.1007/s12551-023-01165-3.


Whole-cell patch-clamp recording and parameters.

Kodirov S Biophys Rev. 2023; 15(2):257-288.

PMID: 37124922 PMC: 10133435. DOI: 10.1007/s12551-023-01055-8.


Maxwell Equations without a Polarization Field, Using a Paradigm from Biophysics.

Eisenberg R Entropy (Basel). 2021; 23(2).

PMID: 33573137 PMC: 7912333. DOI: 10.3390/e23020172.


Gating charge displacement in a monomeric voltage-gated proton (H1) channel.

Carmona E, Larsson H, Neely A, Alvarez O, Latorre R, Gonzalez C Proc Natl Acad Sci U S A. 2018; 115(37):9240-9245.

PMID: 30127012 PMC: 6140481. DOI: 10.1073/pnas.1809705115.


Voltage sensing mechanism in skeletal muscle excitation-contraction coupling: coming of age or midlife crisis?.

Hernandez-Ochoa E, Schneider M Skelet Muscle. 2018; 8(1):22.

PMID: 30025545 PMC: 6053751. DOI: 10.1186/s13395-018-0167-9.


References
1.
Almers W . Observations on intramembrane charge movements in skeletal muscle. Philos Trans R Soc Lond B Biol Sci. 1975; 270(908):507-13. DOI: 10.1098/rstb.1975.0027. View

2.
GOLDMAN D . POTENTIAL, IMPEDANCE, AND RECTIFICATION IN MEMBRANES. J Gen Physiol. 2009; 27(1):37-60. PMC: 2142582. DOI: 10.1085/jgp.27.1.37. View

3.
Warner A . Kinetic properties of the chloride conductance of frog muscle. J Physiol. 1972; 227(1):291-312. PMC: 1331276. DOI: 10.1113/jphysiol.1972.sp010033. View

4.
Valdiosera R, Clausen C, Eisenberg R . Impedance of frog skeletal muscle fibers in various solutions. J Gen Physiol. 1974; 63(4):460-91. PMC: 2203562. DOI: 10.1085/jgp.63.4.460. View

5.
Mobley B, Leung J, Eisenberg R . Longitudinal impedance of skinned frog muscle fibers. J Gen Physiol. 1974; 63(5):625-37. PMC: 2203567. DOI: 10.1085/jgp.63.5.625. View