Finite Element Simulation of an Electroosmotic-driven Flow Division at a T-junction of Microscale Dimensions
Affiliations
A finite element formulation is developed for the simulation of an electroosmotic flow in rectangular microscale channel networks. The distribution of the flow at a decoupling T-junction is investigated from a hydrodynamic standpoint in the case of a pressure-driven and an electroosmotically driven flow. The calculations are carried out in two steps: first solving the potential distribution arising from the external electric field and from the inherent zeta potential. These distributions are then injected in the Navier Stokes equation for the calculation of the velocity profile. The influence of the various parameters such as the zeta potential distribution, the Reynolds number, and the relative channel widths on the flow distribution is investigated.
Computational Fluid-Structure Interaction in Microfluidics.
Musharaf H, Roshan U, Mudugamuwa A, Trinh Q, Zhang J, Nguyen N Micromachines (Basel). 2024; 15(7).
PMID: 39064408 PMC: 11278627. DOI: 10.3390/mi15070897.
Ji J, Qian S, Parker A, Zhang X Micromachines (Basel). 2023; 14(11).
PMID: 38004934 PMC: 10673314. DOI: 10.3390/mi14112077.
Transient Two-Layer Electroosmotic Flow and Heat Transfer of Power-Law Nanofluids in a Microchannel.
Deng S, Xiao T Micromachines (Basel). 2022; 13(3).
PMID: 35334697 PMC: 8956120. DOI: 10.3390/mi13030405.
Basu H, Bahga S, Kondaraju S Proc Math Phys Eng Sci. 2020; 476(2242):20200423.
PMID: 33223942 PMC: 7655760. DOI: 10.1098/rspa.2020.0423.
Numerical Study of Electro-Osmotic Fluid Flow and Vortex Formation.
De Souza Bezerra W, Castelo A, Afonso A Micromachines (Basel). 2019; 10(12).
PMID: 31757052 PMC: 6953093. DOI: 10.3390/mi10120796.