Singh A, Singh K, Sharma A, Kaur K, Chadha R, Bedi P
RSC Med Chem. 2023; 14(11):2155-2191.
PMID: 37974965
PMC: 10650961.
DOI: 10.1039/d3md00316g.
Sekine M, Okamoto K, Ichida K
Biomedicines. 2021; 9(11).
PMID: 34829959
PMC: 8615798.
DOI: 10.3390/biomedicines9111723.
Peretz H, Lagziel A, Bittner F, Kabha M, Shtauber-Naamati M, Zhuravel V
Biomedicines. 2021; 9(7).
PMID: 34356852
PMC: 8301430.
DOI: 10.3390/biomedicines9070788.
Lewis S, Rosencrance C, De Vallance E, Giromini A, Williams X, Oh J
Free Radic Biol Med. 2021; 174:84-88.
PMID: 34273539
PMC: 9257433.
DOI: 10.1016/j.freeradbiomed.2021.07.012.
Koppel N, Bisanz J, Pandelia M, Turnbaugh P, Balskus E
Elife. 2018; 7.
PMID: 29761785
PMC: 5953540.
DOI: 10.7554/eLife.33953.
A new paradigm for XOR-catalyzed reactive species generation in the endothelium.
Kelley E
Pharmacol Rep. 2015; 67(4):669-74.
PMID: 26321266
PMC: 4555844.
DOI: 10.1016/j.pharep.2015.05.004.
Mechanistic insights into xanthine oxidoreductase from development studies of candidate drugs to treat hyperuricemia and gout.
Nishino T, Okamoto K
J Biol Inorg Chem. 2014; 20(2):195-207.
PMID: 25501928
PMC: 4334109.
DOI: 10.1007/s00775-014-1210-x.
Structural and functional insights into the catalytic inactivity of the major fraction of buffalo milk xanthine oxidoreductase.
Gadave K, Panda S, Singh S, Kalra S, Malakar D, Mohanty A
PLoS One. 2014; 9(1):e87618.
PMID: 24498153
PMC: 3909206.
DOI: 10.1371/journal.pone.0087618.
The mononuclear molybdenum enzymes.
Hille R, Hall J, Basu P
Chem Rev. 2014; 114(7):3963-4038.
PMID: 24467397
PMC: 4080432.
DOI: 10.1021/cr400443z.
Mechanism of porcine liver xanthine oxidoreductase mediated N-oxide reduction of cyadox as revealed by docking and mutagenesis studies.
Chen C, Cheng G, Hao H, Dai M, Wang X, Huang L
PLoS One. 2013; 8(9):e73912.
PMID: 24040113
PMC: 3767608.
DOI: 10.1371/journal.pone.0073912.
Xanthine oxidoreductase-catalyzed reactive species generation: A process in critical need of reevaluation.
Cantu-Medellin N, Kelley E
Redox Biol. 2013; 1:353-8.
PMID: 24024171
PMC: 3757702.
DOI: 10.1016/j.redox.2013.05.002.
Xanthine oxidoreductase-catalyzed reduction of nitrite to nitric oxide: insights regarding where, when and how.
Cantu-Medellin N, Kelley E
Nitric Oxide. 2013; 34:19-26.
PMID: 23454592
PMC: 3706534.
DOI: 10.1016/j.niox.2013.02.081.
Mutations associated with functional disorder of xanthine oxidoreductase and hereditary xanthinuria in humans.
Ichida K, Amaya Y, Okamoto K, Nishino T
Int J Mol Sci. 2012; 13(11):15475-95.
PMID: 23203137
PMC: 3509653.
DOI: 10.3390/ijms131115475.
Chemical nature and reaction mechanisms of the molybdenum cofactor of xanthine oxidoreductase.
Okamoto K, Kusano T, Nishino T
Curr Pharm Des. 2012; 19(14):2606-14.
PMID: 23116398
PMC: 3624778.
DOI: 10.2174/1381612811319140010.
Molybdenum enzymes in higher organisms.
Hille R, Nishino T, Bittner F
Coord Chem Rev. 2011; 255(9-10):1179-1205.
PMID: 21516203
PMC: 3079273.
DOI: 10.1016/j.ccr.2010.11.034.
Molecular characterization of human xanthine oxidoreductase: the enzyme is grossly deficient in molybdenum and substantially deficient in iron-sulphur centres.
Godber B, Schwarz G, Mendel R, Lowe D, Bray R, Eisenthal R
Biochem J. 2005; 388(Pt 2):501-8.
PMID: 15679468
PMC: 1138957.
DOI: 10.1042/BJ20041984.
Expression of Drosophila melanogaster xanthine dehydrogenase in Aspergillus nidulans and some properties of the recombinant enzyme.
Adams B, Lowe D, Smith A, Scazzocchio C, Demais S, Bray R
Biochem J. 2002; 362(Pt 1):223-9.
PMID: 11829759
PMC: 1222379.
DOI: 10.1042/0264-6021:3620223.
Crystal structures of bovine milk xanthine dehydrogenase and xanthine oxidase: structure-based mechanism of conversion.
ENROTH C, Eger B, Okamoto K, Nishino T, Pai E
Proc Natl Acad Sci U S A. 2000; 97(20):10723-8.
PMID: 11005854
PMC: 27090.
DOI: 10.1073/pnas.97.20.10723.