Rai B, Sabeti F, Carle C, Maddess T
J Clin Med. 2024; 13(9).
PMID: 38730989
PMC: 11084906.
DOI: 10.3390/jcm13092458.
Kim S, Park C, Park H
Sci Rep. 2022; 12(1):10173.
PMID: 35715424
PMC: 9205973.
DOI: 10.1038/s41598-022-13781-2.
Aher A, Horn F, Huchzermeyer C, Lammer R, Kremers J
Invest Ophthalmol Vis Sci. 2021; 62(9):14.
PMID: 34241626
PMC: 8287051.
DOI: 10.1167/iovs.62.9.14.
Neustaeter A, Nolte I, Snieder H, Jansonius N
BMC Ophthalmol. 2021; 21(1):18.
PMID: 33413217
PMC: 7789075.
DOI: 10.1186/s12886-020-01771-9.
Terauchi R, Wada T, Ogawa S, Kaji M, Kato T, Tatemichi M
J Ophthalmol. 2020; 2020:4687398.
PMID: 32318280
PMC: 7152947.
DOI: 10.1155/2020/4687398.
Steady-State Pattern Electroretinogram and Frequency Doubling Technology in Adult Dyslexic Readers.
Schiavi C, Finzi A, Cellini M
Clin Ophthalmol. 2019; 13:2451-2459.
PMID: 31849443
PMC: 6912011.
DOI: 10.2147/OPTH.S229898.
Steady-state pattern electroretinogram and frequency doubling technology in anisometropic amblyopia.
Schiavi C, Tassi F, Finzi A, Strobbe E, Cellini M
Clin Ophthalmol. 2016; 10:2061-2068.
PMID: 27799733
PMC: 5077269.
DOI: 10.2147/OPTH.S117803.
Dyslexia: the Role of Vision and Visual Attention.
Stein J
Curr Dev Disord Rep. 2014; 1(4):267-280.
PMID: 25346883
PMC: 4203994.
DOI: 10.1007/s40474-014-0030-6.
Modeling the relative influence of fixation and sampling errors on retest variability in perimetry.
Maddess T
Graefes Arch Clin Exp Ophthalmol. 2014; 252(10):1611-9.
PMID: 25074042
DOI: 10.1007/s00417-014-2751-y.
Visual evoked potential and psychophysical contrast thresholds in glaucoma.
Abdullah S, Sanderson G, James A, Vaegan , Maddess T
Doc Ophthalmol. 2014; 128(2):111-20.
PMID: 24615592
DOI: 10.1007/s10633-014-9428-z.
Changes in frequency-doubling perimetry in patients with type I diabetes prior to retinopathy.
Pinilla I, Ferreras A, Idoipe M, Sanchez-Cano A, Perez-Garcia D, Herrera L
Biomed Res Int. 2013; 2013:341269.
PMID: 24319681
PMC: 3844182.
DOI: 10.1155/2013/341269.
Frequency-doubling technology and retinal measurements with spectral-domain optical coherence tomography in preperimetric glaucoma.
Hirashima T, Hangai M, Nukada M, Nakano N, Morooka S, Akagi T
Graefes Arch Clin Exp Ophthalmol. 2012; 251(1):129-37.
PMID: 22684903
DOI: 10.1007/s00417-012-2076-7.
Pattern electroretinogram and psychophysical tests of visual function for discriminating between healthy and glaucoma eyes.
Tafreshi A, Racette L, Weinreb R, Sample P, Zangwill L, Medeiros F
Am J Ophthalmol. 2010; 149(3):488-95.
PMID: 20172073
PMC: 2827352.
DOI: 10.1016/j.ajo.2009.09.027.
Structural and functional relationships in glaucoma using standard automated perimetry and the Humphrey Matrix.
Park S, Nam Y, Sung K, Kook M
Korean J Ophthalmol. 2009; 23(3):176-82.
PMID: 19794944
PMC: 2739974.
DOI: 10.3341/kjo.2009.23.3.176.
Visual function-specific perimetry to identify glaucomatous visual loss using three different definitions of visual field abnormality.
Tafreshi A, Sample P, Liebmann J, Girkin C, Zangwill L, Weinreb R
Invest Ophthalmol Vis Sci. 2008; 50(3):1234-40.
PMID: 18978349
PMC: 2848160.
DOI: 10.1167/iovs.08-2535.
Frequency doubling illusion VEPs and automated perimetry in multiple sclerosis.
Ruseckaite R, Maddess T, Danta G, James A
Doc Ophthalmol. 2006; 113(1):29-41.
PMID: 16906411
DOI: 10.1007/s10633-006-9011-3.
Ganglion cell loss and age-related visual loss: a cortical pooling analysis.
Pearson P, Schmidt L, Ly-Schroeder E, Swanson W
Optom Vis Sci. 2006; 83(7):444-54.
PMID: 16840870
PMC: 1636583.
DOI: 10.1097/01.opx.0000218432.52508.10.
Relationship between visual field loss and contrast threshold elevation in glaucoma.
Tochel C, Morton J, Jay J, Morrison J
BMC Ophthalmol. 2005; 5:22.
PMID: 16159386
PMC: 1249580.
DOI: 10.1186/1471-2415-5-22.
Correlation between frequency doubling technology perimetry and temporal frequency characteristics in early glaucoma.
Yu J, Kiyosawa M, Nemoto N, Momose K, Mori H, Mochizuki M
Doc Ophthalmol. 2003; 107(2):93-9.
PMID: 14661898
DOI: 10.1023/a:1026270726285.