Falchi F, Borlotti G, Ferretti F, Pellegrino G, Raneri M, Schiavoni M
Front Microbiol. 2021; 12:744458.
PMID: 34566945
PMC: 8461315.
DOI: 10.3389/fmicb.2021.744458.
Bashir A, Tian T, Yu X, Meng C, Ali M, Li L
Int J Mol Sci. 2020; 21(6).
PMID: 32235814
PMC: 7139650.
DOI: 10.3390/ijms21062198.
Raneri M, Pinatel E, Peano C, Rampioni G, Leoni L, Bianconi I
Sci Rep. 2018; 8(1):16912.
PMID: 30442901
PMC: 6237876.
DOI: 10.1038/s41598-018-35087-y.
Heacock-Kang Y, Sun Z, Zarzycki-Siek J, Poonsuk K, McMillan I, Chuanchuen R
Antimicrob Agents Chemother. 2018; 62(12).
PMID: 30297364
PMC: 6256797.
DOI: 10.1128/AAC.01459-18.
Liu Y, Wang Z, Bilal M, Hu H, Wang W, Huang X
Front Microbiol. 2018; 9:759.
PMID: 29740409
PMC: 5924801.
DOI: 10.3389/fmicb.2018.00759.
TatC-dependent translocation of pyoverdine is responsible for the microbial growth suppression.
Lee Y, Kim Y, Lee J, Yu H, Lee K, Jin S
J Microbiol. 2016; 54(2):122-30.
PMID: 26832668
DOI: 10.1007/s12275-016-5542-9.
Decreasing global transcript levels over time suggest that phytoplasma cells enter stationary phase during plant and insect colonization.
Pacifico D, Galetto L, Rashidi M, Abba S, Palmano S, Firrao G
Appl Environ Microbiol. 2015; 81(7):2591-602.
PMID: 25636844
PMC: 4357924.
DOI: 10.1128/AEM.03096-14.
Deciphering Evolutionary Mechanisms Between Mutualistic and Pathogenic Symbioses.
Nishiguchi M, Hirsch A, DeVinney R, Vedantam G, Riley M, Mansky L
Vie Milieu. 2009; 58(2):87-106.
PMID: 19655044
PMC: 2719982.
Immunoproteomics to examine cystic fibrosis host interactions with extracellular Pseudomonas aeruginosa proteins.
Upritchard H, Cordwell S, Lamont I
Infect Immun. 2008; 76(10):4624-32.
PMID: 18663005
PMC: 2546828.
DOI: 10.1128/IAI.01707-07.
Drosophila melanogaster-based screening for multihost virulence factors of Pseudomonas aeruginosa PA14 and identification of a virulence-attenuating factor, HudA.
Kim S, Park S, Heo Y, Cho Y
Infect Immun. 2008; 76(9):4152-62.
PMID: 18591226
PMC: 2519450.
DOI: 10.1128/IAI.01637-07.
Pyoverdine-mediated iron uptake in Pseudomonas aeruginosa: the Tat system is required for PvdN but not for FpvA transport.
Voulhoux R, Filloux A, Schalk I
J Bacteriol. 2006; 188(9):3317-23.
PMID: 16621825
PMC: 1447448.
DOI: 10.1128/JB.188.9.3317-3323.2006.
Unraveling the secret lives of bacteria: use of in vivo expression technology and differential fluorescence induction promoter traps as tools for exploring niche-specific gene expression.
Rediers H, Rainey P, Vanderleyden J, De Mot R
Microbiol Mol Biol Rev. 2005; 69(2):217-61.
PMID: 15944455
PMC: 1197422.
DOI: 10.1128/MMBR.69.2.217-261.2005.
Transcriptome analysis of Pseudomonas aeruginosa after interaction with human airway epithelial cells.
Frisk A, Schurr J, Wang G, Bertucci D, Marrero L, Hwang S
Infect Immun. 2004; 72(9):5433-8.
PMID: 15322041
PMC: 517424.
DOI: 10.1128/IAI.72.9.5433-5438.2004.
Functional characterization of an aminotransferase required for pyoverdine siderophore biosynthesis in Pseudomonas aeruginosa PAO1.
Vandenende C, Vlasschaert M, Seah S
J Bacteriol. 2004; 186(17):5596-602.
PMID: 15317763
PMC: 516838.
DOI: 10.1128/JB.186.17.5596-5602.2004.
In vivo expression technology.
Angelichio M, Camilli A
Infect Immun. 2002; 70(12):6518-23.
PMID: 12438320
PMC: 132940.
DOI: 10.1128/IAI.70.12.6518-6523.2002.
FpvA receptor involvement in pyoverdine biosynthesis in Pseudomonas aeruginosa.
Shen J, Meldrum A, Poole K
J Bacteriol. 2002; 184(12):3268-75.
PMID: 12029043
PMC: 135083.
DOI: 10.1128/JB.184.12.3268-3275.2002.
Essential PchG-dependent reduction in pyochelin biosynthesis of Pseudomonas aeruginosa.
Reimmann C, Patel H, Serino L, Barone M, WALSH C, Haas D
J Bacteriol. 2001; 183(3):813-20.
PMID: 11208777
PMC: 94946.
DOI: 10.1128/JB.183.3.813-820.2001.