» Articles » PMID: 10710434

Rapid, High Fidelity Analysis of Simple Sequence Repeats on an Electronically Active DNA Microchip

Overview
Specialty Biochemistry
Date 2000 Mar 10
PMID 10710434
Citations 11
Authors
Affiliations
Soon will be listed here.
Abstract

We describe a method for the discrimination of short tandem repeat (STR) alleles based on active microarray hybridization. An essential factor in this method is electronic hybridization of the target DNA, at high stringency, in <5 min. High stringency is critical to avoid slippage of hybrids along repeat tracts at allele-specific test sites in the array. These conditions are attainable only with hybridization kinetics realized by electronic concentration of DNA. A sandwich hybrid is assembled, in which proper base stacking of juxtaposed terminal nucleotides results in a thermodynamically favored complex. The increased stability of this complex relative to non-stacked termini and/or base pair mismatches is used to determine the identification of STR alleles. This method is capable of simultaneous and precise identification of alleles containing different numbers of repeats, as well as mutations within these repeats. Given the throughput capabilities of microarrays our system has the potential to enhance the use of microsatellites in forensic criminology, diagnostics and genetic mapping.

Citing Articles

Electric field-enhanced electrochemical CRISPR biosensor for DNA detection.

Li Z, Ding X, Yin K, Xu Z, Cooper K, Liu C Biosens Bioelectron. 2021; 192:113498.

PMID: 34280652 PMC: 8453050. DOI: 10.1016/j.bios.2021.113498.


Fate of nitrogen in agriculture and environment: agronomic, eco-physiological and molecular approaches to improve nitrogen use efficiency.

Anas M, Liao F, Verma K, Aqeel Sarwar M, Mahmood A, Chen Z Biol Res. 2020; 53(1):47.

PMID: 33066819 PMC: 7565752. DOI: 10.1186/s40659-020-00312-4.


Branch migration displacement assay with automated heuristic analysis for discrete DNA length measurement using DNA microarrays.

Pourmand N, Caramuta S, Villablanca A, Mori S, Karhanek M, Wang S Proc Natl Acad Sci U S A. 2007; 104(15):6146-51.

PMID: 17389407 PMC: 1838402. DOI: 10.1073/pnas.0700921104.


Low-volume amplification on chemically structured chips using the PowerPlex16 DNA amplification kit.

Schmidt U, Lutz-Bonengel S, Weisser H, Sanger T, Pollak S, Schon U Int J Legal Med. 2005; 120(1):42-8.

PMID: 16231187 DOI: 10.1007/s00414-005-0041-2.


A novel method of identifying genetic mutations using an electrochemical DNA array.

Wakai J, Takagi A, Nakayama M, Miya T, Miyahara T, Iwanaga T Nucleic Acids Res. 2004; 32(18):e141.

PMID: 15498924 PMC: 524315. DOI: 10.1093/nar/gnh141.


References
1.
Pieters J, Mans R, van den Elst H, van der Marel G, VAN Boom J, Altona C . Conformational and thermodynamic consequences of the introduction of a nick in duplexed DNA fragments: an NMR study augmented by biochemical experiments. Nucleic Acids Res. 1989; 17(12):4551-65. PMC: 318014. DOI: 10.1093/nar/17.12.4551. View

2.
Edman C, Raymond D, Wu D, Tu E, Sosnowski R, BUTLER W . Electric field directed nucleic acid hybridization on microchips. Nucleic Acids Res. 1998; 25(24):4907-14. PMC: 147163. DOI: 10.1093/nar/25.24.4907. View

3.
Yershov G, Barsky V, Belgovskiy A, Kirillov E, Kreindlin E, Ivanov I . DNA analysis and diagnostics on oligonucleotide microchips. Proc Natl Acad Sci U S A. 1996; 93(10):4913-8. PMC: 39379. DOI: 10.1073/pnas.93.10.4913. View

4.
Lane M, Paner T, Kashin I, Faldasz B, Li B, Gallo F . The thermodynamic advantage of DNA oligonucleotide 'stacking hybridization' reactions: energetics of a DNA nick. Nucleic Acids Res. 1997; 25(3):611-7. PMC: 146477. DOI: 10.1093/nar/25.3.611. View

5.
Ramsay G . DNA chips: state-of-the art. Nat Biotechnol. 1998; 16(1):40-4. DOI: 10.1038/nbt0198-40. View