» Articles » PMID: 10679488

Transcriptional and Posttranscriptional Regulation of Endothelial Nitric Oxide Synthase Expression by Hydrogen Peroxide

Overview
Journal Circ Res
Date 2000 Feb 19
PMID 10679488
Citations 134
Authors
Affiliations
Soon will be listed here.
Abstract

Diverse stimuli, including shear stress, cyclic strain, oxidized LDL, hyperglycemia, and cell growth, modulate endothelial nitric oxide synthase (eNOS) expression. Although seemingly unrelated, these may all alter cellular redox state, suggesting that reactive oxygen intermediates might modulate eNOS expression. The present study was designed to test this hypothesis. Exposure of bovine aortic endothelial cells for 24 hours to paraquat, a superoxide (O(2)(-*))-generating compound, did not affect eNOS mRNA levels. However, cotreatment with paraquat and either Cu(2+)/Zn(2+) superoxide dismutase or the superoxide dismutase mimetic tetrakis(4-benzoic acid)porphyrin chloride increased eNOS mRNA by 2.3- and 2.2-fold, respectively, implicating a role for H(2)O(2). Direct addition of 100 and 150 micromol/L H(2)O(2) caused increases in bovine aortic endothelial cell eNOS mRNA that were dependent on concentration (ie, 3.1- and 5.2-fold increases) and time, and elevated eNOS protein expression and enzyme activity, accordingly. Nuclear run-on and 5, 6-dichloro-1-beta-D-ribofuranosylbenzimidazole-chase studies showed that H(2)O(2) caused a 3.0-fold increase in eNOS gene transcription and a 2.8-fold increase in eNOS mRNA half-life. Induction of eNOS by H(2)O(2) was not affected by the hydroxyl radical scavenger DMSO, mannitol, or N-tert-butyl-alpha-phenylnitrone, but it was inhibited by the antioxidants N-acetylcysteine, ebselen, and exogenously added catalase. Unlike H(2)O(2), the 4.0-fold induction of eNOS by shear stress (15 dyne/cm(2) for 6 hours) was not inhibited by N-acetylcysteine or exogenous catalase. In conclusion, H(2)O(2) increases eNOS expression through transcriptional and post-transcriptional mechanisms. Although H(2)O(2) does not mediate shear-dependent eNOS regulation, it is likely to be involved in regulation of eNOS expression in response to other physiological and/or pathophysiological stimuli.

Citing Articles

Bisphenol A and Its Emergent Substitutes: State of the Art of the Impact of These Plasticizers on Oxidative Stress and Its Role in Vascular Dysfunction.

Palacios-Valladares J, Martinez-Jimenez Y, Morillon-Torres V, Rivera-Maya O, Gomez R, Calderon-Aranda E Antioxidants (Basel). 2025; 13(12.

PMID: 39765797 PMC: 11673293. DOI: 10.3390/antiox13121468.


NADPH Oxidase 4: Crucial for Endothelial Function under Hypoxia-Complementing Prostacyclin.

Brendel H, Mittag J, Hofmann A, Hempel H, Giebe S, Diaba-Nuhoho P Antioxidants (Basel). 2024; 13(10).

PMID: 39456432 PMC: 11504732. DOI: 10.3390/antiox13101178.


Complex Interplay between DNA Damage and Autophagy in Disease and Therapy.

Singh A, Ravendranathan N, Frisbee J, Singh K Biomolecules. 2024; 14(8).

PMID: 39199310 PMC: 11352539. DOI: 10.3390/biom14080922.


Polyphenol-rich juice sustains eNOS activation through phosphorylation and expression via redox-sensitive pathways in endothelial cells.

Kim J, Choi M, Auger C, Lee K, Schini-Kerth V Food Sci Biotechnol. 2024; 33(12):2865-2875.

PMID: 39184991 PMC: 11339019. DOI: 10.1007/s10068-024-01546-8.


Liquid plasma promotes angiogenesis through upregulation of endothelial nitric oxide synthase-induced extracellular matrix metabolism: potential applications of liquid plasma for vascular injuries.

Kang S, Kim H, Ma S, Oh D, Jang J, Seo C Cell Commun Signal. 2024; 22(1):138.

PMID: 38374138 PMC: 10875778. DOI: 10.1186/s12964-023-01412-w.