» Articles » PMID: 1063419

Simple Synthesis of a 4a-hydroperoxy Adduct of a 1,5-dihydroflavine: Preliminary Studies of a Model for Bacterial Luciferase

Overview
Specialty Science
Date 1976 Apr 1
PMID 1063419
Citations 14
Authors
Affiliations
Soon will be listed here.
Abstract

The solution chemistry of N(5)-alkyl flavinium cations and radical species formed by their le- reduction are discussed. Previously unknown, the 4a-flavine hydroperoxides are established to be formed on reaction of N(5)-alkyl flavinium cations with H2O2 or on reaction of N(5)-alkyl-1, 5-dihydroflavines with 3O2. The stability of the 4a-flavine hydroperoxide species is exemplified in the isolation and characterization of 4a-hydroperoxy-N(5)-ethyl-3-methyl-lumiflavine. 4a-Flavine hydroperoxide compounds are shown to be stronger oxidants than H2O2, and to undergo a chemiluminescent reaction in the presence of an aldehyde. Preliminary observations on the chemiluminescent reaction of 4a-flavine hydroperoxides + RCHO are provided, and these are compared to those in the literature dealing with the bioluminescence of bacterial luciferase in the presence of 3O2 and RCHO.

Citing Articles

Synthetic C6-Functionalized Aminoflavin Catalysts Enable Aerobic Bromination of Oxidation-Prone Substrates.

Walter A, Storch G Angew Chem Int Ed Engl. 2020; 59(50):22505-22509.

PMID: 32790228 PMC: 7756793. DOI: 10.1002/anie.202009657.


Flavinium Catalysed Photooxidation: Detection and Characterization of Elusive Peroxyflavinium Intermediates.

Zelenka J, Cibulka R, Roithova J Angew Chem Int Ed Engl. 2019; 58(43):15412-15420.

PMID: 31364790 PMC: 6852162. DOI: 10.1002/anie.201906293.


Characterization of the flavin monooxygenase involved in biosynthesis of the antimalarial FR-900098.

Nguyen K, DeSieno M, Bae B, Johannes T, Cobb R, Zhao H Org Biomol Chem. 2019; 17(6):1506-1518.

PMID: 30681110 PMC: 6365201. DOI: 10.1039/c8ob02840k.


Design of peptide-containing 5-unmodified neutral flavins that catalyze aerobic oxygenations.

Arakawa Y, Yamanomoto K, Kita H, Minagawa K, Tanaka M, Haraguchi N Chem Sci. 2018; 8(8):5468-5475.

PMID: 30155226 PMC: 6102831. DOI: 10.1039/c7sc01933e.


Catalytic Amine Oxidation under Ambient Aerobic Conditions: Mimicry of Monoamine Oxidase B.

Murray A, Dowley M, Pradaux-Caggiano F, Baldansuren A, Fielding A, Tuna F Angew Chem Int Ed Engl. 2015; 54(31):8997-9000.

PMID: 26087676 PMC: 4524416. DOI: 10.1002/anie.201503654.


References
1.
Hastings J, Balny C . The oxygenated bacterial luciferase-flavin intermediate. Reaction products via the light and dark pathways. J Biol Chem. 1975; 250(18):7288-93. View

2.
Balny C, Hastings J . Fluorescence and bioluminescence of bacterial luciferase intermediates. Biochemistry. 1975; 14(21):4719-23. DOI: 10.1021/bi00692a024. View

3.
Ghisla S, MASSEY V, Lhoste J, Mayhew S . Fluorescence and optical characteristics of reduced flavines and flavoproteins. Biochemistry. 1974; 13(3):589-97. DOI: 10.1021/bi00700a029. View

4.
Mitchell G, Hastings J . The effect of flavin isomers and analogues upon the color of bacterial bioluminescence. J Biol Chem. 1969; 244(10):2572-6. View

5.
Spector T, MASSEY V . p-Hydroxybenzoate hydroxylase from Pseudomonas fluorescens. Reactivity with oxygen. J Biol Chem. 1972; 247(22):7123-7. View