» Articles » PMID: 10571926

Cardiac Motion Tracking Using CINE Harmonic Phase (HARP) Magnetic Resonance Imaging

Overview
Journal Magn Reson Med
Publisher Wiley
Specialty Radiology
Date 1999 Nov 26
PMID 10571926
Citations 217
Authors
Affiliations
Soon will be listed here.
Abstract

This article introduces a new image processing technique for rapid analysis of tagged cardiac magnetic resonance image sequences. The method uses isolated spectral peaks in SPAMM-tagged magnetic resonance images, which contain information about cardiac motion. The inverse Fourier transform of a spectral peak is a complex image whose calculated angle is called a harmonic phase (HARP) image. It is shown how two HARP image sequences can be used to automatically and accurately track material points through time. A rapid, semiautomated procedure to calculate circumferential and radial Lagrangian strain from tracked points is described. This new computational approach permits rapid analysis and visualization of myocardial strain within 5-10 min after the scan is complete. Its performance is demonstrated on MR image sequences reflecting both normal and abnormal cardiac motion. Results from the new method are shown to compare very well with a previously validated tracking algorithm. Magn Reson Med 42:1048-1060, 1999.

Citing Articles

A survey on deep learning in medical image registration: New technologies, uncertainty, evaluation metrics, and beyond.

Chen J, Liu Y, Wei S, Bian Z, Subramanian S, Carass A Med Image Anal. 2024; 100():103385.

PMID: 39612808 PMC: 11730935. DOI: 10.1016/j.media.2024.103385.


In-silico heart model phantom to validate cardiac strain imaging.

Mukherjee T, Usman M, Mehdi R, Mendiola E, Ohayon J, Lindquist D bioRxiv. 2024; .

PMID: 39149320 PMC: 11326205. DOI: 10.1101/2024.08.05.606672.


Regional associations between inspiratory tongue dilatory movement and genioglossus activity during wakefulness in people with obstructive sleep apnoea.

Juge L, Liao A, Yeung J, Knapman F, Bull C, Burke P J Physiol. 2023; 601(24):5795-5811.

PMID: 37983193 PMC: 10953361. DOI: 10.1113/JP285187.


Deep Learning Synthetic Strain: Quantitative Assessment of Regional Myocardial Wall Motion at MRI.

Masutani E, Chandrupatla R, Wang S, Zocchi C, Hahn L, Horowitz M Radiol Cardiothorac Imaging. 2023; 5(3):e220202.

PMID: 37404797 PMC: 10316298. DOI: 10.1148/ryct.220202.


Improved computation of Lagrangian tissue displacement and strain for cine DENSE MRI using a regularized spatiotemporal least squares method.

Ghadimi S, Abdi M, Epstein F Front Cardiovasc Med. 2023; 10:1095159.

PMID: 37008315 PMC: 10061004. DOI: 10.3389/fcvm.2023.1095159.


References
1.
McVeigh E . Regional myocardial function. Cardiol Clin. 1998; 16(2):189-206. DOI: 10.1016/s0733-8651(05)70008-4. View

2.
ODell W, Moore C, HUNTER W, Zerhouni E, McVeigh E . Three-dimensional myocardial deformations: calculation with displacement field fitting to tagged MR images. Radiology. 1995; 195(3):829-35. PMC: 2396322. DOI: 10.1148/radiology.195.3.7754016. View

3.
Moore C, Reeder S, McVeigh E . Tagged MR imaging in a deforming phantom: photographic validation. Radiology. 1994; 190(3):765-9. PMC: 2396255. DOI: 10.1148/radiology.190.3.8115625. View

4.
McVeigh E, Zerhouni E . Noninvasive measurement of transmural gradients in myocardial strain with MR imaging. Radiology. 1991; 180(3):677-83. PMC: 2475677. DOI: 10.1148/radiology.180.3.1871278. View

5.
Atalar E, McVeigh E . Optimization of tag thickness for measuring position with magnetic resonance imaging. IEEE Trans Med Imaging. 1994; 13(1):152-60. PMC: 2396531. DOI: 10.1109/42.276154. View