Zhu Y, Li S, Xie Z, Leung E, Bayerlein R, Omidvari N
Eur J Nucl Med Mol Imaging. 2024; .
PMID: 39549045
DOI: 10.1007/s00259-024-06975-5.
Chen Z, Li Q, Wu D
Med Phys. 2024; 51(5):3309-3321.
PMID: 38569143
PMC: 11128317.
DOI: 10.1002/mp.17047.
Bousse A, Kandarpa V, Rit S, Perelli A, Li M, Wang G
IEEE Trans Radiat Plasma Med Sci. 2024; 8(2):113-137.
PMID: 38476981
PMC: 10927029.
DOI: 10.1109/trpms.2023.3314131.
Bousse A, Kandarpa V, Rit S, Perelli A, Li M, Wang G
ArXiv. 2023; .
PMID: 37461421
PMC: 10350100.
Zhu W, Lee S
Sensors (Basel). 2023; 23(13).
PMID: 37447633
PMC: 10346317.
DOI: 10.3390/s23135783.
Neural MLAA for PET-enabled Dual-Energy CT Imaging.
Li S, Wang G
Proc SPIE Int Soc Opt Eng. 2023; 11595.
PMID: 36883104
PMC: 9986115.
DOI: 10.1117/12.2582317.
Efficient iterative solutions to complex-valued nonlinear least-squares problems with mixed linear and antilinear operators.
Kim T, Haldar J
Optim Eng. 2022; 23(2):749-768.
PMID: 35656362
PMC: 9159680.
DOI: 10.1007/s11081-021-09604-4.
Low-dose CT reconstruction with Noise2Noise network and testing-time fine-tuning.
Wu D, Kim K, Li Q
Med Phys. 2021; 48(12):7657-7672.
PMID: 34791655
PMC: 11216369.
DOI: 10.1002/mp.15101.
Modified kernel MLAA using autoencoder for PET-enabled dual-energy CT.
Li S, Wang G
Philos Trans A Math Phys Eng Sci. 2021; 379(2204):20200204.
PMID: 34218670
PMC: 8255948.
DOI: 10.1098/rsta.2020.0204.
PWLS-PR: low-dose computed tomography image reconstruction using a patch-based regularization method based on the penalized weighted least squares total variation approach.
Fu J, Feng F, Quan H, Wan Q, Chen Z, Liu X
Quant Imaging Med Surg. 2021; 11(6):2541-2559.
PMID: 34079722
PMC: 8107320.
DOI: 10.21037/qims-20-963.
An Investigation of Slot-scanning for Mammography and Breast CT.
Leong A, Gang G, Sisniega A, Wang W, Wu J, Bambot S
Proc SPIE Int Soc Opt Eng. 2020; 11312.
PMID: 33177787
PMC: 7654952.
DOI: 10.1117/12.2550200.
PET-enabled dual-energy CT: image reconstruction and a proof-of-concept computer simulation study.
Wang G
Phys Med Biol. 2020; 65(24):245028.
PMID: 33120376
PMC: 8582600.
DOI: 10.1088/1361-6560/abc5ca.
Model-based dual-energy tomographic image reconstruction of objects containing known metal components.
Liu S, Cao Q, Tivnan M, Tilley Ii S, Siewerdsen J, Stayman J
Phys Med Biol. 2020; 65(24):245046.
PMID: 33113519
PMC: 7942762.
DOI: 10.1088/1361-6560/abc5a9.
Severity and Consolidation Quantification of COVID-19 From CT Images Using Deep Learning Based on Hybrid Weak Labels.
Wu D, Gong K, Arru C, Homayounieh F, Bizzo B, Buch V
IEEE J Biomed Health Inform. 2020; 24(12):3529-3538.
PMID: 33044938
PMC: 8545170.
DOI: 10.1109/JBHI.2020.3030224.
Characterization of tissue-specific pre-log Bayesian CT reconstruction by texture-dose relationship.
Gao Y, Liang Z, Xing Y, Zhang H, Pomeroy M, Lu S
Med Phys. 2020; 47(10):5032-5047.
PMID: 32786070
PMC: 7721985.
DOI: 10.1002/mp.14449.
Statistical characterization of the linear attenuation coefficient in polychromatic CT scans.
Vegas G, San Jose Estepar R
Med Phys. 2020; 47(11):5568-5581.
PMID: 32654155
PMC: 7796558.
DOI: 10.1002/mp.14384.
Extension of emission expectation maximization lookalike algorithms to Bayesian algorithms.
Zeng G, Li Y
Vis Comput Ind Biomed Art. 2020; 2(1):14.
PMID: 32190406
PMC: 7055571.
DOI: 10.1186/s42492-019-0027-4.
Constructing a tissue-specific texture prior by machine learning from previous full-dose scan for Bayesian reconstruction of current ultralow-dose CT images.
Gao Y, Tan J, Shi Y, Lu S, Gupta A, Li H
J Med Imaging (Bellingham). 2020; 7(3):032502.
PMID: 32118093
PMC: 7040436.
DOI: 10.1117/1.JMI.7.3.032502.
SPULTRA: Low-Dose CT Image Reconstruction With Joint Statistical and Learned Image Models.
Ye S, Ravishankar S, Long Y, Fessler J
IEEE Trans Med Imaging. 2019; 39(3):729-741.
PMID: 31425021
PMC: 7170173.
DOI: 10.1109/TMI.2019.2934933.
Simplified Statistical Image Reconstruction for X-ray CT With Beam-Hardening Artifact Compensation.
Abella M, Martinez C, Desco M, Vaquero J, Fessler J
IEEE Trans Med Imaging. 2019; 39(1):111-118.
PMID: 31180844
PMC: 6995645.
DOI: 10.1109/TMI.2019.2921929.