Teekas L, Sharma S, Vijay N
Open Biol. 2024; 14(6):230439.
PMID: 38862022
PMC: 11285758.
DOI: 10.1098/rsob.230439.
Rajan-Babu I, Dolzhenko E, Eberle M, Friedman J
Nat Rev Genet. 2024; 25(7):476-499.
PMID: 38467784
DOI: 10.1038/s41576-024-00696-z.
Enright J, Dickson Z, Golding G
Mol Biol Evol. 2023; 40(4).
PMID: 37036379
PMC: 10124876.
DOI: 10.1093/molbev/msad084.
Kavouras M, Malandrakis E, Danis T, Blom E, Anastassiadis K, Panagiotaki P
Open Life Sci. 2021; 14:549-563.
PMID: 33817191
PMC: 7874752.
DOI: 10.1515/biol-2019-0061.
Pelassa I, Cibelli M, Villeri V, Lilliu E, Vaglietti S, Olocco F
Genome Biol Evol. 2019; 11(11):3159-3178.
PMID: 31589292
PMC: 6839033.
DOI: 10.1093/gbe/evz216.
Comparative analysis of low complexity regions in Plasmodia.
Chaudhry S, Lwin N, Phelan D, Escalante A, Battistuzzi F
Sci Rep. 2018; 8(1):335.
PMID: 29321589
PMC: 5762703.
DOI: 10.1038/s41598-017-18695-y.
Increased substitution rates surrounding low-complexity regions within primate proteins.
Lenz C, Haerty W, Golding G
Genome Biol Evol. 2014; 6(3):655-65.
PMID: 24572016
PMC: 3971593.
DOI: 10.1093/gbe/evu042.
The role of interruptions in polyQ in the pathology of SCA1.
Menon R, Nethisinghe S, Faggiano S, Vannocci T, Rezaei H, Pemble S
PLoS Genet. 2013; 9(7):e1003648.
PMID: 23935513
PMC: 3723530.
DOI: 10.1371/journal.pgen.1003648.
Dissecting the role of low-complexity regions in the evolution of vertebrate proteins.
Rado-Trilla N, Alba M
BMC Evol Biol. 2012; 12:155.
PMID: 22920595
PMC: 3523016.
DOI: 10.1186/1471-2148-12-155.
Insight into role of selection in the evolution of polyglutamine tracts in humans.
Li H, Liu J, Wu K, Chen Y
PLoS One. 2012; 7(7):e41167.
PMID: 22848438
PMC: 3405088.
DOI: 10.1371/journal.pone.0041167.
Increased polymorphism near low-complexity sequences across the genomes of Plasmodium falciparum isolates.
Haerty W, Golding G
Genome Biol Evol. 2011; 3:539-50.
PMID: 21602572
PMC: 3140889.
DOI: 10.1093/gbe/evr045.
Natural selection drives the accumulation of amino acid tandem repeats in human proteins.
Mularoni L, Ledda A, Toll-Riera M, Alba M
Genome Res. 2010; 20(6):745-54.
PMID: 20335526
PMC: 2877571.
DOI: 10.1101/gr.101261.109.
Genome-wide evidence for selection acting on single amino acid repeats.
Haerty W, Golding G
Genome Res. 2010; 20(6):755-60.
PMID: 20056893
PMC: 2877572.
DOI: 10.1101/gr.101246.109.
The origin of conserved protein domains and amino acid repeats via adaptive competition for control over amino acid residues.
Rorick M, Wagner G
J Mol Evol. 2009; 70(1):29-43.
PMID: 20024539
PMC: 3368225.
DOI: 10.1007/s00239-009-9305-7.
The expansion of amino-acid repeats is not associated to adaptive evolution in mammalian genes.
Cruz F, Roux J, Robinson-Rechavi M
BMC Genomics. 2009; 10:619.
PMID: 20021652
PMC: 2806350.
DOI: 10.1186/1471-2164-10-619.
A comparative proteomic analysis of the simple amino acid repeat distributions in Plasmodia reveals lineage specific amino acid selection.
Dalby A
PLoS One. 2009; 4(7):e6231.
PMID: 19597555
PMC: 2705789.
DOI: 10.1371/journal.pone.0006231.
Tandem and cryptic amino acid repeats accumulate in disordered regions of proteins.
Simon M, Hancock J
Genome Biol. 2009; 10(6):R59.
PMID: 19486509
PMC: 2718493.
DOI: 10.1186/gb-2009-10-6-r59.
CAG-encoded polyglutamine length polymorphism in the human genome.
Butland S, Devon R, Huang Y, Mead C, Meynert A, Neal S
BMC Genomics. 2007; 8:126.
PMID: 17519034
PMC: 1896166.
DOI: 10.1186/1471-2164-8-126.
RepSeq--a database of amino acid repeats present in lower eukaryotic pathogens.
Depledge D, Lower R, Smith D
BMC Bioinformatics. 2007; 8:122.
PMID: 17428323
PMC: 1854910.
DOI: 10.1186/1471-2105-8-122.
Mutation patterns of amino acid tandem repeats in the human proteome.
Mularoni L, Guigo R, Alba M
Genome Biol. 2006; 7(4):R33.
PMID: 16640792
PMC: 1557989.
DOI: 10.1186/gb-2006-7-4-r33.