» Articles » PMID: 10547668

Tumor Invasion: Role of Growth Factor-induced Cell Motility

Overview
Journal Adv Cancer Res
Publisher Elsevier
Specialty Oncology
Date 1999 Nov 5
PMID 10547668
Citations 89
Authors
Affiliations
Soon will be listed here.
Abstract

Cancer progression to the invasive and metastatic stage represents the most formidable barrier to successful treatment. To develop rational therapies, we must determine the molecular bases of these transitions. Cell motility is one of the defining characteristics of invasive tumors, enabling tumors to migrate into adjacent tissues or transmigrate limiting basement membranes and extracellular matrices. Invasive tumor cells have been demonstrated to present dysregulated cell motility in response to extracellular signals from growth factors and cytokines. Recent findings suggest that this growth factor receptor-mediated motility is one of the most common aberrations in tumor cells leading to invasiveness and represents a cellular behavior distinct from-adhesion-related haptokinetic and haptotactic migration. This review focuses on the emerging understanding of the biochemical and biophysical foundations of growth factor-induced cell motility and tumor cell invasiveness, and the implications for development of targeted agents, with particular emphasis on signaling from the epidermal growth factor (EGF) and hepatocyte growth factor (HGF) receptors, as these have most often been associated with tumor invasion. The nascent models highlight the roles of various intracellular signaling pathways including phospholipase C-gamma (PLC gamma), phosphatidylinositol (PI)3'-kinase, mitogen-activated protein (MAP) kinase, and actin cytoskeleton-related events. Development of novel agents against tumor invasion will require not only a detailed appreciation of the biochemical regulatory elements of motility but also a paradigm shift in our approach to and assessment of cancer therapy.

Citing Articles

Chemotaxis Assay of Bone Marrow-Derived Macrophages.

Donnelly H, Kiran A, Insall R Methods Mol Biol. 2024; 2828:1-9.

PMID: 39147965 DOI: 10.1007/978-1-0716-4023-4_1.


PHF12 regulates HDAC1 to promote tumorigenesis via EGFR/AKT signaling pathway in non-small cell lung cancer.

Kong Y, Jiang R, Zhou H, Ge M, Lin H, Wang Y J Transl Med. 2024; 22(1):689.

PMID: 39075515 PMC: 11287983. DOI: 10.1186/s12967-024-05488-x.


ALDOC- and ENO2- driven glucose metabolism sustains 3D tumor spheroids growth regardless of nutrient environmental conditions: a multi-omics analysis.

De Vitis C, Battaglia A, Pallocca M, Santamaria G, Mimmi M, Sacco A J Exp Clin Cancer Res. 2023; 42(1):69.

PMID: 36945054 PMC: 10031988. DOI: 10.1186/s13046-023-02641-0.


Targeted therapy for head and neck cancer: signaling pathways and clinical studies.

Li Q, Tie Y, Alu A, Ma X, Shi H Signal Transduct Target Ther. 2023; 8(1):31.

PMID: 36646686 PMC: 9842704. DOI: 10.1038/s41392-022-01297-0.


Signaling pathways and targeted therapies in lung squamous cell carcinoma: mechanisms and clinical trials.

Niu Z, Jin R, Zhang Y, Li H Signal Transduct Target Ther. 2022; 7(1):353.

PMID: 36198685 PMC: 9535022. DOI: 10.1038/s41392-022-01200-x.