Iovino C, Di Iorio V, Brunetti-Pierri R, Lanza M
Diagnostics (Basel). 2022; 12(3).
PMID: 35328226
PMC: 8947680.
DOI: 10.3390/diagnostics12030673.
Battu P, Sharma K, Thangavel R, Singh R, Sharma S, Srivastava V
Clin Ophthalmol. 2022; 16:517-529.
PMID: 35241908
PMC: 8888136.
DOI: 10.2147/OPTH.S318098.
Moon Y, Yang J, Lee W, Lee J, Kim Y, Lim H
Front Neurol. 2021; 12:680488.
PMID: 34630272
PMC: 8498569.
DOI: 10.3389/fneur.2021.680488.
Song S, Baek S, Lee M, Lee Y
Korean J Ophthalmol. 2020; 34(1):46-55.
PMID: 32037749
PMC: 7010466.
DOI: 10.3341/kjo.2019.0044.
Wang F, Zhang Q, Deegan A, Chang J, Wang R
Eye Vis (Lond). 2018; 5:19.
PMID: 30094272
PMC: 6081822.
DOI: 10.1186/s40662-018-0113-2.
Measurement of the hypotenuse of the vertical optic nerve head cup with spectral-domain optical coherence tomography for the structural diagnosis of glaucoma.
Lavinsky F, Benfica C, Castoldi N, do Carmo Chaves A, Mello P
Clin Ophthalmol. 2018; 12:215-225.
PMID: 29416313
PMC: 5789042.
DOI: 10.2147/OPTH.S152772.
Intraoperative optical coherence tomography of the human thyroid: Feasibility for surgical assessment.
Erickson-Bhatt S, Mesa K, Marjanovic M, Chaney E, Ahmad A, Huang P
Transl Res. 2017; 195:13-24.
PMID: 29287166
PMC: 5899010.
DOI: 10.1016/j.trsl.2017.12.001.
The role of intracoronary imaging in acute coronary syndromes: OCT in focus.
Samir A, Elguindy A
Glob Cardiol Sci Pract. 2017; 2016(4):e201636.
PMID: 28979905
PMC: 5624192.
DOI: 10.21542/gcsp.2016.36.
Signal Normalization Reduces Image Appearance Disparity Among Multiple Optical Coherence Tomography Devices.
Chen C, Ishikawa H, Wollstein G, Bilonick R, Kagemann L, Schuman J
Transl Vis Sci Technol. 2017; 6(1):13.
PMID: 28275528
PMC: 5338476.
DOI: 10.1167/6.1.13.
Optical coherence tomography based angiography [Invited].
Chen C, Wang R
Biomed Opt Express. 2017; 8(2):1056-1082.
PMID: 28271003
PMC: 5330554.
DOI: 10.1364/BOE.8.001056.
Virtual Averaging Making Nonframe-Averaged Optical Coherence Tomography Images Comparable to Frame-Averaged Images.
Chen C, Ishikawa H, Wollstein G, Bilonick R, Kagemann L, Schuman J
Transl Vis Sci Technol. 2016; 5(1):1.
PMID: 26835180
PMC: 4727524.
DOI: 10.1167/tvst.5.1.1.
Evaluation of the macula, retinal nerve fiber layer and choroid thickness in postmenopausal women and reproductive-age women using spectral-domain optical coherence tomography.
Atas M, Acmaz G, Aksoy H, Demircan S, Goktas A, Arifoglu H
Prz Menopauzalny. 2015; 13(1):36-41.
PMID: 26327827
PMC: 4520339.
DOI: 10.5114/pm.2014.41088.
Breaking diffraction limit of lateral resolution in optical coherence tomography.
Wang B, Lu R, Zhang Q, Yao X
Quant Imaging Med Surg. 2013; 3(5):243-8.
PMID: 24273741
PMC: 3834204.
DOI: 10.3978/j.issn.2223-4292.2013.10.03.
Evaluating the use of optical coherence tomography in optic neuritis.
Costello F
Mult Scler Int. 2011; 2011:148394.
PMID: 22096626
PMC: 3196333.
DOI: 10.1155/2011/148394.
Structural correlation between the nerve fiber layer and retinal ganglion cell loss in mice with targeted disruption of the Brn3b gene.
Camp A, Ruggeri M, Munguba G, Tapia M, John S, Bhattacharya S
Invest Ophthalmol Vis Sci. 2011; 52(8):5226-32.
PMID: 21622702
PMC: 3176044.
DOI: 10.1167/iovs.10-6307.
Applications of a new In vivo tumor spheroid based shell-less chorioallantoic membrane 3-D model in bioengineering research.
De Magalhaes N, Liaw L, Berns M, Cristini V, Chen Z, Stupack D
J Biomed Sci Eng. 2011; 3(1):20-26.
PMID: 21243108
PMC: 3019609.
DOI: 10.4236/jbise.2010.31003.
Evaluation of optical coherence tomography findings in age-related macular degeneration: a reproducibility study of two independent reading centres.
Ritter M, Elledge J, Simader C, Deak G, Benesch T, Blodi B
Br J Ophthalmol. 2010; 95(3):381-5.
PMID: 20805123
PMC: 3044494.
DOI: 10.1136/bjo.2009.175976.
Cornea in acromegalic patients as a possible target of growth hormone action.
Ciresi A, Amato M, Morreale D, Lodato G, Galluzzo A, Giordano C
J Endocrinol Invest. 2010; 34(2):e30-5.
PMID: 20651471
DOI: 10.1007/BF03347058.
Optical coherence tomography in multiple sclerosis: thickness of the retinal nerve fiber layer as a potential measure of axonal loss and brain atrophy.
Siger M, Dziegielewski K, Jasek L, Bieniek M, Nicpan A, Nawrocki J
J Neurol. 2008; 255(10):1555-60.
PMID: 18825432
DOI: 10.1007/s00415-008-0985-5.
Secondary retinal changes associated with choroidal naevi and melanomas documented by optical coherence tomography.
Muscat S, Parks S, Kemp E, Keating D
Br J Ophthalmol. 2003; 88(1):120-4.
PMID: 14693788
PMC: 1771938.
DOI: 10.1136/bjo.88.1.120.