» Articles » PMID: 10531542

Influence of the Axotomy to Cell Body Distance in Rat Rubrospinal and Spinal Motoneurons: Differential Regulation of GAP-43, Tubulins, and Neurofilament-M

Overview
Journal J Comp Neurol
Specialty Neurology
Date 1999 Oct 26
PMID 10531542
Citations 61
Authors
Affiliations
Soon will be listed here.
Abstract

Axotomized motoneurons regenerate their axons regardless of whether axotomy occurs proximally or distally from their cell bodies. In contrast, regeneration of rubrospinal axons into peripheral nerve grafts has been detected after cervical but not after thoracic injury of the rubrospinal tract. By using in situ hybridization (ISH) combined with reliable retrograde tracing methods, we compared regeneration-associated gene expression after proximal and distal axotomy in spinal motoneurons versus rubrospinal neurons. Regardless of whether they were axotomized at the iliac crest (proximal) or popliteal fossa (distal), sciatic motoneurons underwent highly pronounced changes in ISH signals for Growth Associated Protein 43 (GAP-43) (10-20x increase) and neurofilament M (60-85% decrease). In contrast, tubulin ISH signals substantially increased only after proximal axotomy (3-5x increase). To compare these changes in gene expression with those of axotomized rubrospinal neurons, the rubrospinal tract was transected at the cervical (proximal) or thoracic (distal) levels of the spinal cord. Cervically axotomized rubrospinal neurons showed three- to fivefold increases in ISH signals for GAP-43 and tubulins (only transient) and a 75% decrease for neurofilament-M. In sharp contrast, thoracic axotomy had only marginal effects. After implantation of peripheral nerve transplants into the spinal cord injury sites, retrograde labeling with the sensitive retrograde tracer Fluoro-Gold identified regenerating rubrospinal neurons only after cervical axotomy. Furthermore, rubrospinal neurons specifically regenerating into the transplants were hypertrophied and expressed high levels of GAP-43 and tubulins. Taken together, these data support the concept that, even if central nervous system (CNS) axons are presented with a permissive/supportive environment, appropriate cell body responses to injury are a prerequisite for CNS axonal regeneration.

Citing Articles

Neurons Are Not All the Same: Diversity in Neuronal Populations and Their Intrinsic Responses to Spinal Cord Injury.

Siebert J, Kennedy K, Osterhout D ASN Neuro. 2025; 17(1):2440299.

PMID: 39819292 PMC: 11877619. DOI: 10.1080/17590914.2024.2440299.


Single-Nuclei Sequencing Reveals a Robust Corticospinal Response to Nearby Axotomy But Overall Insensitivity to Spinal Injury.

Wang Z, Kumaran M, Batsel E, Testor-Cabrera S, Beine Z, Alvarez Ribelles A J Neurosci. 2025; 45(8).

PMID: 39746824 PMC: 11841758. DOI: 10.1523/JNEUROSCI.1508-24.2024.


Neuronal maturation and axon regeneration: unfixing circuitry to enable repair.

Hilton B, Griffin J, Fawcett J, Bradke F Nat Rev Neurosci. 2024; 25(10):649-667.

PMID: 39164450 DOI: 10.1038/s41583-024-00849-3.


Injury distance limits the transcriptional response to spinal injury.

Wang Z, Kumaran M, Batsel E, Testor-Cabrera S, Beine Z, Alvarez Ribelles A bioRxiv. 2024; .

PMID: 38854133 PMC: 11160615. DOI: 10.1101/2024.05.27.596075.


Therapeutic Strategies Targeting Respiratory Recovery after Spinal Cord Injury: From Preclinical Development to Clinical Translation.

Michel-Flutot P, Lane M, Lepore A, Vinit S Cells. 2023; 12(11).

PMID: 37296640 PMC: 10252981. DOI: 10.3390/cells12111519.