Hakamata T, Higuchi T
Front Sports Act Living. 2025; 7:1528075.
PMID: 39931733
PMC: 11807988.
DOI: 10.3389/fspor.2025.1528075.
Jung D, Sturnieks D, McDonald K, Song P, Davis M, Lord S
PLoS One. 2025; 20(1):e0312261.
PMID: 39787054
PMC: 11717211.
DOI: 10.1371/journal.pone.0312261.
Hakamata T, Sakazaki J, Higuchi T
Front Sports Act Living. 2024; 6:1411037.
PMID: 39205814
PMC: 11349672.
DOI: 10.3389/fspor.2024.1411037.
Sudo D, Maeda Y
J Phys Ther Sci. 2023; 35(3):175-181.
PMID: 36866013
PMC: 9974328.
DOI: 10.1589/jpts.35.175.
Kuo C, Chen S, Wang J, Ho T, Lu T
Front Bioeng Biotechnol. 2021; 9:774771.
PMID: 34926422
PMC: 8675231.
DOI: 10.3389/fbioe.2021.774771.
Influence of motor instruction words on body movements in step-over motions.
Kitao H, Kida N, Nomura T, Fukada C, Nakamoto T, Otani M
J Phys Ther Sci. 2021; 33(9):627-631.
PMID: 34539064
PMC: 8436035.
DOI: 10.1589/jpts.33.627.
Visuomotor control of leaping over a raised obstacle is sensitive to small baseline displacements.
Daniels K, Burn J
R Soc Open Sci. 2021; 8(3):201877.
PMID: 33959347
PMC: 8074954.
DOI: 10.1098/rsos.201877.
A rapid whisker-based decision underlying skilled locomotion in mice.
Warren R, Zhang Q, Hoffman J, Li E, Hong Y, Bruno R
Elife. 2021; 10.
PMID: 33428566
PMC: 7800376.
DOI: 10.7554/eLife.63596.
Manipulating sensory information: obstacle crossing strategies between typically developing children and young adults.
Rapos V, Cinelli M
Exp Brain Res. 2020; 238(2):513-523.
PMID: 31960105
DOI: 10.1007/s00221-020-05732-y.
The influence of carrying an anterior load on attention demand and obstacle clearance before, during, and after obstacle crossing.
Jehu D, Saunders D, Richer N, Paquet N, Lajoie Y
Exp Brain Res. 2019; 237(12):3313-3319.
PMID: 31690972
DOI: 10.1007/s00221-019-05673-1.
Fear of Falling Contributing to Cautious Gait Pattern in Women Exposed to a Fictional Disturbing Factor: A Non-randomized Clinical Trial.
Bueno G, Gervasio F, Martins Ribeiro D, Martins A, Lemos T, Menezes R
Front Neurol. 2019; 10:283.
PMID: 30972013
PMC: 6445048.
DOI: 10.3389/fneur.2019.00283.
Control of vertical posture while elevating one foot to avoid a real or virtual obstacle.
Ida H, Mohapatra S, Aruin A
Exp Brain Res. 2017; 235(6):1677-1687.
PMID: 28271221
DOI: 10.1007/s00221-017-4929-0.
Strategies for obstacle crossing in older adults with high and low risk of falling.
Pan H, Hsu H, Chang W, Renn J, Wu H
J Phys Ther Sci. 2016; 28(5):1614-20.
PMID: 27313384
PMC: 4905923.
DOI: 10.1589/jpts.28.1614.
The training and detraining effects of 8 weeks of water exercise on obstacle avoidance in gait by the elderly.
Lim H, Yoon S
J Phys Ther Sci. 2014; 26(8):1215-8.
PMID: 25202183
PMC: 4155222.
DOI: 10.1589/jpts.26.1215.
Location of minimum foot clearance on the shoe and with respect to the obstacle changes with locomotor task.
Loverro K, Mueske N, Hamel K
J Biomech. 2013; 46(11):1842-50.
PMID: 23747230
PMC: 3747961.
DOI: 10.1016/j.jbiomech.2013.05.002.
Segmental control for adaptive locomotor adjustments during obstacle clearance in healthy young adults.
MacLellan M, McFadyen B
Exp Brain Res. 2010; 202(2):307-18.
PMID: 20049421
DOI: 10.1007/s00221-009-2133-6.
Three-dimensional kinematics and dynamics of the foot during walking: a model of central control mechanisms.
Osaki Y, Kunin M, Cohen B, Raphan T
Exp Brain Res. 2006; 176(3):476-96.
PMID: 16917770
DOI: 10.1007/s00221-006-0633-1.
Characteristics of single and double obstacle avoidance strategies: a comparison between adults and children.
Berard J, Vallis L
Exp Brain Res. 2006; 175(1):21-31.
PMID: 16761138
DOI: 10.1007/s00221-006-0529-0.
The effects of distant and on-line visual information on the control of approach phase and step over an obstacle during locomotion.
Mohagheghi A, Moraes R, Patla A
Exp Brain Res. 2004; 155(4):459-68.
PMID: 14770275
DOI: 10.1007/s00221-003-1751-7.